CERI有害性評価書

フタル酸ビス(2-エチルヘキシル)
Bis(2-Ethylhexyl) phthalate

CAS登録番号：117-81-7

http://www.cerij.or.jp
CERI 有害性評価書について

化学物質は、私たちの生活に欠かせないものですが、環境中への排出などに伴い、ヒトの健康のみならず、生態系や地球環境への有害な影響が懸念されています。有害な影響の程度は、有害性及び暴露量を把握することにより知ることができます。暴露量の把握には、実際にモニタリング調査を実施する他に、特定化学物質の環境への排出量の把握等及び管理の促進に関する法律（化学物質排出把握管理促進法）に基づく化学物質の排出量情報の活用などが考えられます。

CERI 有害性評価書は、化学物質評価研究機構（CERI）の責任において、原版である化学物質有害性評価書を編集したものです。実際に化学物質を取り扱っている事業者等が、化学物質の有害性について、その全体像を把握する際に利用いただくことを目的としています。

予想することが困難な地球環境問題や新たな問題に対処していくためには、法律による一律の規制を課すだけでは十分な対応が期待できず、事業者自らが率先して化学物質を管理するという考え方が既に国際的に普及しています。こうした考え方に従う事業者で、法令の遵守はもとより、法令に規定されていない事項であっても環境影響や健康被害を未然に防止するために必要な措置を自主的に講じることが求められ、自らが取り扱っている化学物質の有害性を正しく認識しておくことが必要になります。このようなときに、CERI 有害性評価書を活用いただければと考えています。

CERI 有害性評価書は、化学物質の有害性の全体像を把握していただく為に編集したものですので、さらに詳細な情報を必要とする場合には、化学物質有害性評価書を読み進めるることをお勧めいたします。また、文献一覧は原版と同じものを用意し、作成時点での重要文献を網羅的に示していますので、独自に調査を進める場合にもお役に立つものと思います。

なお、化学物質有害性評価書は、新エネルギー・産業技術総合開発機構（NEDO）からの委託事業である「化学物質総合評価管理プログラム」の中の「化学物質のリスク評価およびリスク評価手法の開発プロジェクト」において作成したものです。
目次

1. 化学物質の同定情報.. 1
2. 我が国における法規制.. 1
3. 物理化学的性状.. 1
4. 製造輸入量・用途情報.. 2
5. 環境中運命.. 3
 5.2 水中での安定性.. 3
 5.2.1 非生物的分解性.. 3
 5.2.2 生分解性.. 3
 5.3 環境水中での動態.. 4
 5.4 生物濃縮性... 4
6. 環境中の生物への影響.. 5
 6.1 水生生物に対する影響... 5
 6.1.1 藻類に対する毒性... 5
 6.1.2 無脊椎動物に対する毒性.. 5
 6.1.3 魚類に対する毒性... 7
 6.2 内分泌系への影響... 9
 6.3 環境中の生物への影響（まとめ）... 9
7. ヒト健康への影響.. 10
 7.1 生体内運命 ... 10
 7.2 疫学調査及び事例.. 12
 7.3 実験動物に対する毒性.. 13
 7.3.1 急性毒性... 13
 7.3.2 刺激性及び腐食性.. 13
 7.3.3 感作性 .. 13
 7.3.4 反復投与毒性.. 13
 7.3.5 生殖・発生毒性.. 15
 7.3.6 遺伝毒性.. 17
 7.3.7 発がん性... 18
 7.3.8 内分泌系への影響.. 19
 7.4 ヒト健康への影響（まとめ）... 19

文献.. 21
1. 化学物質の同定情報

<table>
<thead>
<tr>
<th>物質名</th>
<th>フタル酸ビス(2-エチルヘキシル)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>フタル酸ジ(2-エチルヘキシル)、フタル酸ジオクチル、DEHP、DOP</td>
</tr>
<tr>
<td></td>
<td>注)フタル酸ジ(m-オクチル)を指す場合もある。</td>
</tr>
<tr>
<td>化学物質排出把握管理促進法</td>
<td>政令号番号 1-272</td>
</tr>
<tr>
<td>化学物質審査規制法</td>
<td>官報公示整理番号 3-1307</td>
</tr>
<tr>
<td>CAS登録番号</td>
<td>117-81-7</td>
</tr>
<tr>
<td>構造式</td>
<td></td>
</tr>
</tbody>
</table>

| 分子式 | C₂₄H₃₈O₄ |
| 分子量 | 390.56 |

2. 我が国における法規制

<table>
<thead>
<tr>
<th>法 律 名</th>
<th>項 目</th>
</tr>
</thead>
<tbody>
<tr>
<td>化学物質排出把握管理促進法</td>
<td>第一種指定化学物質</td>
</tr>
<tr>
<td>消防法</td>
<td>危険物第四類第四石油類</td>
</tr>
<tr>
<td>労働安全衛生法</td>
<td>名称等を通知すべき有害物</td>
</tr>
</tbody>
</table>

3. 物理化学的性状

<table>
<thead>
<tr>
<th>項 目</th>
<th>特 性 値</th>
<th>出 典</th>
</tr>
</thead>
<tbody>
<tr>
<td>外 観</td>
<td>無色粘稠性液体</td>
<td>U.S.NLM:HSDB, 2002</td>
</tr>
<tr>
<td>融 点</td>
<td>-50℃</td>
<td>IPCS, 2002</td>
</tr>
<tr>
<td></td>
<td>-55℃</td>
<td>U.S.NLM:HSDB, 2002</td>
</tr>
<tr>
<td>沸 点</td>
<td>385℃ (約 230℃ (7 hPa)</td>
<td>IPCS, 2002</td>
</tr>
<tr>
<td></td>
<td>約 230℃ (7 hPa)</td>
<td>EU:IUCLID, 2000</td>
</tr>
<tr>
<td>引 火 点</td>
<td>215℃ (開放式)</td>
<td>IPCS, 2002</td>
</tr>
<tr>
<td>発 火 点</td>
<td>350℃</td>
<td>IPCS, 2002</td>
</tr>
<tr>
<td>爆 発 限 界</td>
<td>0.1% (下限界、空気中)</td>
<td>IPCS, 2002</td>
</tr>
<tr>
<td>比 重</td>
<td>0.9861</td>
<td>U.S.NLM:HSDB, 2002</td>
</tr>
<tr>
<td>蒸 汗 密 度</td>
<td>13.46 (空気 = 1)</td>
<td>計算値</td>
</tr>
<tr>
<td>蒸 汗 圧</td>
<td>3.04×10⁻⁵ Pa (20℃)、160 Pa (200℃)</td>
<td>環境庁環境化学物質研究会、1988</td>
</tr>
<tr>
<td>分 配 係 数</td>
<td>log Kow = 7.60 (実測値)、8.39 (推定値)</td>
<td>SRC:KowWin, 2002</td>
</tr>
<tr>
<td>解 離 定 数</td>
<td>解離基なし</td>
<td>U.S.NLM:HSDB, 2002</td>
</tr>
<tr>
<td>土 壌 吸 着 係 数</td>
<td>Koc = 87,420～510,000 (測定値)</td>
<td>U.S.NLM:HSDB, 2002</td>
</tr>
<tr>
<td>溶 解 性</td>
<td>水: 0.285 mg/L (24℃)</td>
<td>U.S.NLM:HSDB, 2002</td>
</tr>
<tr>
<td></td>
<td>アルコール類、エーテル類、ベンゼン、化学物質評価研究機構、2002</td>
<td></td>
</tr>
</tbody>
</table>
アセトンなどの溶媒：混和

<table>
<thead>
<tr>
<th>ヘンリー定数</th>
<th>2.74×10⁻² Pa·m³/mol (25℃、測定値)</th>
<th>SRC: HenryWin, 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>換算係数</td>
<td>1 ppm = 16.24 mg/m³</td>
<td></td>
</tr>
<tr>
<td>（気相、20℃）</td>
<td>1 mg/m³ = 0.062 ppm</td>
<td>計算値</td>
</tr>
</tbody>
</table>

4. 製造・輸入量・用途情報 (表 4-1、表 4-2)

表 4-1 製造・輸入量等 (トン)

<table>
<thead>
<tr>
<th>年</th>
<th>1997</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造量</td>
<td>307,200</td>
<td>260,800</td>
<td>268,800</td>
<td>253,700</td>
<td>244,600</td>
</tr>
<tr>
<td>輸入量</td>
<td>9,100</td>
<td>6,400</td>
<td>7,200</td>
<td>10,900</td>
<td>15,400</td>
</tr>
<tr>
<td>輸出量</td>
<td>31,500</td>
<td>30,900</td>
<td>54,500</td>
<td>40,700</td>
<td>44,400</td>
</tr>
<tr>
<td>国内出荷量</td>
<td>276,900</td>
<td>227,100</td>
<td>223,300</td>
<td>219,300</td>
<td>201,700</td>
</tr>
</tbody>
</table>

出典：製品評価技術基盤機構 / フタル酸エステル類リスク評価管理研究会 (2004)

表 4-2 用途別使用量割合

<table>
<thead>
<tr>
<th>用途</th>
<th>割合</th>
<th>具体的な製品</th>
</tr>
</thead>
<tbody>
<tr>
<td>可塑剤</td>
<td>塩化ビニル樹脂</td>
<td>96％</td>
</tr>
<tr>
<td></td>
<td>シート</td>
<td>房材</td>
</tr>
<tr>
<td></td>
<td>一般用フィルム・シート</td>
<td></td>
</tr>
<tr>
<td></td>
<td>農業用フィルム・シート</td>
<td></td>
</tr>
<tr>
<td></td>
<td>工業用原料</td>
<td></td>
</tr>
<tr>
<td></td>
<td>壁紙</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ホース・ガスケット</td>
<td></td>
</tr>
<tr>
<td></td>
<td>合成レザー</td>
<td></td>
</tr>
<tr>
<td></td>
<td>靴物</td>
<td></td>
</tr>
<tr>
<td></td>
<td>その他の樹脂</td>
<td>1％</td>
</tr>
<tr>
<td>溶剤</td>
<td></td>
<td>3％</td>
</tr>
<tr>
<td></td>
<td>塗料・顔料・接着剤</td>
<td></td>
</tr>
</tbody>
</table>

出典：製品評価技術基盤機構 / フタル酸エステル類リスク評価管理研究会 (2004)
5. 環境中運命

5.1 大気中での安定性（表 5-1）

蒸気圧は 0.0304 mPa（20℃）であり、土壤吸着係数 Koc は 87,420～510,000 である。大気中に排出されると、大部分は大気中に浮遊する微粒子への吸着や雨水への溶解などにより沈降される（US. NLM: HSDB, 2002）。残りは OH ラジカルなどと反応すると推定される。

<table>
<thead>
<tr>
<th>対 象</th>
<th>反応速度定数（cm³/分子/秒）</th>
<th>濃 度（分子/cm³）</th>
<th>半減期</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH ラジカル</td>
<td>2.20×10⁻¹¹（25℃、推定値）</td>
<td>5×10⁻⁵～1×10⁰</td>
<td>0.5～1 日</td>
</tr>
<tr>
<td>オゾン</td>
<td>データなし</td>
<td></td>
<td></td>
</tr>
<tr>
<td>硝酸ラジカル</td>
<td>データなし</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

出典：SRC, AopWin Estimation Software, ver. 1.90. (反応速度定数)

太陽光を吸収するので、対流層大気中では直接光分解される可能性がある（US. NLM: HSDB, 2002）。

5.2 水中での安定性

5.2.1 非生物的分解性

25℃における加水分解は pH 7 では 5.3 年、pH 8 では 195 日と推定されている（SRC: HydroWin, 2002）。加水分解生成物はフタル酸と 2-エチルヘキサノールが推定される。

5.2.2 生分解性

a 好気的生分解性（表 5-2、表 5-3）

<table>
<thead>
<tr>
<th>分解率の測定法</th>
<th>分解率 (%)</th>
<th>判定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>生物化学的酸素消費量（BOD）測定</td>
<td>69</td>
<td>良分解性</td>
</tr>
<tr>
<td>ガスクロマトグラフ（GC）測定</td>
<td>89</td>
<td></td>
</tr>
</tbody>
</table>

被験物質濃度：100 mg/L、活性汚泥濃度：30 mg/L、試験期間：4 週間
出典：通商産業省（1975）通商産業公報（1975 年 8 月 27 日）

<table>
<thead>
<tr>
<th>試験方法</th>
<th>被試験物質濃度</th>
<th>試験期間</th>
<th>分解率</th>
<th>出 典</th>
</tr>
</thead>
<tbody>
<tr>
<td>活性汚泥を用いた試験</td>
<td>不明</td>
<td>38 時間</td>
<td>91%</td>
<td>Graham, 1973</td>
</tr>
<tr>
<td>バクテリアとかびを含む数種の微生物を用いた試験</td>
<td>不明</td>
<td>10～35 日</td>
<td>40～90%</td>
<td>Graham, 1973</td>
</tr>
<tr>
<td>土壌中での試験</td>
<td>500 mg/kg</td>
<td>20 日</td>
<td>75%</td>
<td>Shanker et al., 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 日</td>
<td>95%以上</td>
<td></td>
</tr>
</tbody>
</table>

http://www.cerij.or.jp
その他に、活性汚泥と河川水中で究極的に分解されることが示されている（Saeger and Tucker, 1973）。生分解速度は、温度に依存し、土壌での4℃, 10℃, 22℃~25℃ 及び32℃での試験で、4℃と10℃では限られた分解が示されたのみであるが、22℃~25℃及び32℃では容易に分解した（Mathur, 1974）。また、分解速度は微生物の飼化も大きな影響を与えるとしている（Sugatt et al., 1984）。

エステラーゼによってモノエステルを経てフタル酸を生成し（Engelhardt et al., 1975; Kurane et al., 1980; Taylor et al., 1981）、さらに環が開裂してピルビン酸とシュウ酸に分解し、安息香酸と同様に二酸化炭素と水に代謝される（Kurane et al., 1984）。

また、分解速度は微生物の飼化も大きな影響を与えるとしている（Sugatt et al., 1984）。

b 嫌気的生分解性
嫌気条件下での分解速度は非常に遅いとの報告がある（U.S. NLM: HSDB, 2002）。

以上のことから、フタル酸ビス(2-エチルヘキシル)は好気条件下では生分解され、嫌気的条件下では生分解され難いと推定される。

5.3 環境水中での動態
環境水中での加水分解速度は速くないが、環境中の微生物による生分解速度は遅いと推定される。また、土壌吸着係数Kocから判断して、環境水中の懸濁物質に吸着して底質に移行すると推定される。ヘンリー定数の値（2.74×10^2 Pa・m3/mol, 25℃）から、水面からの揮散の可能性は非常に低いと推定される。

以上のことなどから、環境水中でフタル酸ビス(2-エチルヘキシル)が排出された場合は、主に生分解により除去されると推定される。ある程度は底質へ移行するが、揮散による大気への移行の可能性は非常に低いと推定される。

5.4 生物濃縮性（表 5-4）

<table>
<thead>
<tr>
<th>生物種</th>
<th>濃度 (mg/L)</th>
<th>試験期間 (週間)</th>
<th>濃縮倍率</th>
<th>判定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>コイ</td>
<td>1</td>
<td>8</td>
<td>1.0〜3.4</td>
<td>濃縮性がない</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td></td>
<td>0.7未満〜29.7</td>
<td>又は低い</td>
</tr>
</tbody>
</table>

出典：通商産業省（1975）通商産業公報（1975年8月27日）

オクタノール/水分配係数が大きい(log Kowが7.60)にもかかわらず、フタル酸ビス(2-エチルヘキシル)の濃縮性が低いのは生体内で代謝されて排出が速やかなためと解釈されている（IPCS, 1992; Wofford et al., 1981）。

http://www.cerij.or.jp
6. 環境中の生物への影響
6.1 水生生物に対する影響
6.1.1 藻類に対する毒性（表6-1）
試験液の調製に助剤を用いない96時間EC50（生長阻害）は0.1 mg/L超、長期毒性とみなされる生長阻害に関するNOECは0.1 mg/L以上（Adams et al., 1995）、助剤（界面活性剤）を用いた試験の72時間EC50は100 mg/L超、NOECは30.0 mg/L（バイオマス）と100 mg/L以上（生長速度）（環境庁, 1997）の報告がある。

<table>
<thead>
<tr>
<th>生物種</th>
<th>試験法/方式</th>
<th>温度(℃)</th>
<th>エンドポイント</th>
<th>濃度(mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selenastrum capricornutum1)</td>
<td>U.S. EPA GLP止水機械的分散</td>
<td>22-24</td>
<td>96時間EC50 NOEC</td>
<td>>0.1 ≥0.1 (m)</td>
<td>Adams et al., 1995</td>
</tr>
<tr>
<td>OECD 201 GLP止水助剤2)</td>
<td>23±2</td>
<td>72-48時間EC50</td>
<td>生長速度</td>
<td>>100</td>
<td>環境庁, 1997</td>
</tr>
</tbody>
</table>

(a, n): 被験物質の測定濃度が設定値の±20%以内であったので設定濃度により表示、
(m): 測定濃度、(n): 設定濃度、
1) 現学名: Pseudokirchneriella subcapitata 2) 硬化ヒマシ油 (HCO-30、100 mg/L)

6.1.2 無脊椎動物に対する毒性（表6-2）
甲殻類について得られている結果は、オオミジンコに対する48時間EC50（遊泳阻害）はAdamsら（1995）及び環境庁（1997）によってそれぞれ0.16 mg/L超及び100 mg/L超であると報告されている。一方、LeBlanc（1980）により、48時間LC50が11 mg/Lと、また、Passino and Smith（1987）により48時間EC50が0.133 mg/Lと報告されている。海産種に対する48時間EC50は0.37〜300 mg/L超であった（Adams et al.,1995; Cox and Moran 1984; Linden et al., 1979）。これらの値は著しく異なるために、毒性の強さを評価するのは困難である。ミジンコ類を用いた長期毒性においても0.077〜14 mg/Lと大きな幅がある。変動する要因として、フタル酸ビス(2-エチルヘキシル)の水への溶解度が低いため、飽和液やアセトン、エタノール等の有機溶剤を用いる試験では試験液表面に膜を形成し、これにミジンコがトラップされることによる物理的な影響、またトラップされないように界面活性剤等を用いて試験液表面に膜あるいは試験液中に不溶物質が生じないようにした試験では物理的な影響はなくなるものの、水中での存在形態が変わり、それによって生物体への取り込み量も変動することも示唆され、その結果影響濃度が水への溶解度を遥かに超えてしまうことも挙げられる。

http://www.cerij.or.jp
オオミジンコの21日間繁殖試験について、算出したNOECが水への溶解度付近であるかは以下の報告を確認している。NOECが水への溶解度付近あるいは以下で値の確定している報告は、0.077 mg/L (Cox and Moran, 1984; Rhodes et al., 1995; Springborn Bionomics, 1984)、0.158 mg/L (Knowles et al., 1987)及び0.640 mg/L (Adams and Heidolph, 1985)であった。このうちRhodesらはアセトンやエタノール等の有機溶剤や分散剤を用いず機械的な分散法を用いて試験を行っており、ミジンコが不溶物質にトラップされて試験液表面に浮いていたことが報告されている。また、理由は明らかでないが、対照区においてもミジンコが試験液表面に浮いていた。さらにOECDテストガイドラインの有効性基準から判断すると、対照区での親1頭当たりの産仔数がそれを満たしていなかった。従って、信頼性があるとはいえず、評価には使用できない。Knowlesらは、ミジンコがトラップされて試験液表面に浮いていたものの摂餌や親の産仔には影響を与えなかったと報告しており(Knowles et al., 1987)、OECDテストガイドラインの有効性基準も満たした試験であると考えられ、Adams and Heidolphの報告(Adams and Heidolph, 1985)とともに評価に使用できる。

<table>
<thead>
<tr>
<th>生物種</th>
<th>大きさ/成長段階</th>
<th>試験法/方式</th>
<th>溫度(℃)</th>
<th>硬度(mg CaCO₃/L)</th>
<th>pH</th>
<th>エンドポイント</th>
<th>濃度(mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daphnia magna (甲殻類、オオミジンコ)</td>
<td>生後24時間以内</td>
<td>U.S. EPA GLP止水機械的分散</td>
<td>20±1</td>
<td>ND</td>
<td>ND</td>
<td>48時間EC₅₀</td>
<td>遊泳阻害</td>
<td>>0.16(m)</td>
</tr>
<tr>
<td>OECD 202 GLP止水助剤</td>
<td>20±1</td>
<td>65</td>
<td>7.9~8.2</td>
<td>48時間EC₅₀</td>
<td>遊泳阻害</td>
<td>>100(a,n)</td>
<td>環境庁, 1997</td>
<td></td>
</tr>
<tr>
<td>止水助剤</td>
<td>22±1</td>
<td>173</td>
<td>8.0±0.2</td>
<td>48時間EC₅₀</td>
<td>遊泳阻害</td>
<td>0.133(n)</td>
<td>Passino & Smith, 1987</td>
<td></td>
</tr>
<tr>
<td>Daphnia pulex (甲殻類、シンジンコ)</td>
<td>生後24時間以内</td>
<td>止水助剤</td>
<td>17</td>
<td>ND</td>
<td>ND</td>
<td>48時間EC₅₀</td>
<td>遊泳阻害</td>
<td>0.133(n)</td>
</tr>
<tr>
<td>Nitocra spinipes (甲殻類、ナシジンコ目の一種)</td>
<td>3-6週齢</td>
<td>止水助剤</td>
<td>21±1</td>
<td>塩分濃度 7%o</td>
<td>7.8</td>
<td>96時間LC₅₀</td>
<td>>300(n)</td>
<td>Linden et al., 1979</td>
</tr>
<tr>
<td>Americamysis bahia (甲殻類、シンジンコ目の一種)</td>
<td>生後24時間以内</td>
<td>U.S. EPA GLP止水機械的分散</td>
<td>20±1</td>
<td>ND</td>
<td>ND</td>
<td>96時間LC₅₀</td>
<td>>0.37(m)</td>
<td>Adams et al., 1995; Cox & Moran, 1984</td>
</tr>
<tr>
<td>Daphnia magna (甲殻類、オオミジンコ)</td>
<td>生後24時間以内</td>
<td>半止水助剤</td>
<td>20±1</td>
<td>180±20</td>
<td>8.25±0.25</td>
<td>21日間NOEC</td>
<td>致死、繁殖</td>
<td>≥0.1(n)</td>
</tr>
<tr>
<td>半止水助剤</td>
<td>21±23</td>
<td>ND</td>
<td>ND</td>
<td>21日間NOEC</td>
<td>致死、繁殖</td>
<td>0.640(m)</td>
<td>Adams & Heidolph, 1985</td>
<td></td>
</tr>
<tr>
<td>流水助剤</td>
<td>22±2</td>
<td>300</td>
<td>7.9</td>
<td>21日間NOEC</td>
<td>致死、繁殖</td>
<td>0.158(m)</td>
<td>Knowles et al., 1987</td>
<td></td>
</tr>
</tbody>
</table>

http://www.cerij.or.jp
<table>
<thead>
<tr>
<th>生物種</th>
<th>大きさ/成長段階</th>
<th>試験法/方式</th>
<th>溫度 (℃)</th>
<th>硬度 (mg CaCO₃/L)</th>
<th>pH</th>
<th>エンドポイント</th>
<th>濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>流水</td>
<td>機械的分散</td>
<td>21±2</td>
<td>180</td>
<td>ND</td>
<td>21日間 NOEC 致死</td>
<td>0.077 (m)</td>
<td>Rhodes et al.,</td>
<td>1995; Springborn bionomics, 1984; Cox & Moran, 1984</td>
</tr>
<tr>
<td>半止水</td>
<td>助剤</td>
<td>20</td>
<td>ND</td>
<td>ND</td>
<td>21日間 NOEC 致死、繁殖</td>
<td>14 (m)</td>
<td>Scholz, 1995</td>
<td></td>
</tr>
<tr>
<td>OECD</td>
<td>202 GLP</td>
<td>20±1</td>
<td>65</td>
<td>7.2-8.2</td>
<td>21日間 NOEC 致死、繁殖</td>
<td>10 (a, n)</td>
<td>環境庁, 1997</td>
<td></td>
</tr>
<tr>
<td>流水</td>
<td>助剤</td>
<td>20±1</td>
<td>Elendt's M4 培地</td>
<td>ND</td>
<td>21日間 NOEC 産仔数</td>
<td>> 1.0 (n)</td>
<td>Brown et al.,</td>
<td>1998</td>
</tr>
</tbody>
</table>

ND: データなし、(a, n): 被験物質の測定濃度が設定値の±20%以内であったので設定濃度により表示、(m): 測定濃度、(n): 設定濃度
1) 硬化ヒマシ油 (HCO-30, 100 mg/L)、2) 種類及び数量未確認、3) アセトン (≦0.5 mL/L)、4) Marlowet R40 (10 mg/L)、5) ジメチルホルムアミド (≦0.1 mL/L)、6) アセトン (≦50 µL/L)、7) Marlowet R40 (30 mg/L)、8) 硬化ヒマシ油 (HCO-50, 30 mg/L)、9) Tween20 (2.5-10 mg/L)

6.1.3 魚類に対する毒性（表6-3）

魚類に対する大部分の試験結果では試験期間中に試験生物の死亡はなく、その LC₅₀ は試験最高濃度以上 (0.16 mg/L ~ 770 mg/L 超) であり、フタル酸ビス(2-エチルヘキシル)の水への溶解度 (0.285 mg/L) を遥かに超えた値を示している報告もあることから、これらの値から毒性の強さを評価するのは困難である。

長期試験としては、致死や成長、あるいは受精卵からの試験ではふ化率を指標とした試験の報告がある。急性毒性と同様に大部分の結果は試験最高濃度以上であり、値の確定しているものはニジマスの受精卵を用いた 2 試験のみである。このうち異なる硬度の希釈水 (50 及び 200 mg CaCO₃/L) を用いてふ化後 4 日間まで暴露した時の LC₅₀ は、それぞれ 139.5 mg/L 及び 149.2 mg/L であった (Birge et al., 1979)。しかし、この試験では試験物質を機械的に分散させた後に、この溶液を流水式試験系に送液しており、試験液が均一ではなかった可能性がある。その結果、算出された値が水への溶解度を大幅に超えたものと考えられる。また、ニジマスの受精卵を用いて胚期 12 日間及びふ化後 90 日間暴露した試験において、ふ化仔魚の死亡を指標にしたふ化後 24 日間の NOEC は 0.005 mg/L (Mehrle and Mayer, 1976) であったが、この試験では OECD テストガイドライン 210 の魚類初期生活段階毒性試験 (1992) の有効性基準から判断すると、ふ化後の死亡率はバラツキの範囲であること、用いた助剤 (アセトン) 濃度が基準より高いことから、信頼性は低い。助剤をなるべく用いない試験を考慮すると、ニジマスの受精卵を用い、ふ化率、致死及び成長を指標とした 90 日間の NOEC が 0.502 mg/L 超であるとする報告がある (Defoe et al., 1990) が、この値は水への溶解度を超えている。なお、この試験では高濃度の 2 濃度 (0.502 及び 0.259 mg/L) において対照区と比較して有意な差ではなかったが、それぞれ約 10%の体重低下がみられた。

調査した範囲内では海産種での長期試験の報告はなかった。

http://www.cerij.or.jp
表 6-3 フタル酸ビス(2-エチルヘキシル) の魚類に対する毒性試験結果

<table>
<thead>
<tr>
<th>生物種</th>
<th>大きさ/成長段階</th>
<th>試験法/方式</th>
<th>温度 (℃)</th>
<th>硬度 (mg CaCO₃/L)</th>
<th>pH</th>
<th>エンドポイント濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>急性毒性 淡水</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pimephales promelas (ファットヘッド・ミノー)</td>
<td>29-40 mm</td>
<td>U.S. EPA GLP 止水機械的分散</td>
<td>20±1</td>
<td>25-50</td>
<td>7.6-7.9</td>
<td>96時間 LC₅₀ > 0.16 (m)</td>
<td>Adams et al., 1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U.S. EPA GLP 流水機械的分散</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oryzias latipes (メダカ)</td>
<td>1.90 cm 0.107 g</td>
<td>OECD 203 GLP 半止水助剤</td>
<td>24±1</td>
<td>61</td>
<td>6.3-7.8</td>
<td>96時間 LC₅₀ 74.8 (a, n)</td>
<td>環境庁, 1997</td>
</tr>
<tr>
<td>Lepomis macrochirus (ブルーギル)</td>
<td>29-40 mm</td>
<td>U.S. EPA GLP 止水助剤</td>
<td>20±1</td>
<td>25-50</td>
<td>7.6-7.9</td>
<td>96時間 LC₅₀ > 0.20 (m)</td>
<td>Adams et al., 1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U.S. EPA GLP 流水機械的分散</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oncorhynchus mykiss (ニジマス)</td>
<td>39-62 mm</td>
<td>U.S. EPA GLP 流水機械的分散</td>
<td>20±1</td>
<td>25-50</td>
<td>7.6-7.9</td>
<td>96時間 LC₅₀ > 0.32 (m)</td>
<td>Adams et al., 1995</td>
</tr>
<tr>
<td>急性毒性 海水</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprinodon variegatus (シープスヘッド・ミノー)</td>
<td>6-17 mm</td>
<td>U.S. EPA GLP 止水機械的分散</td>
<td>20±1</td>
<td>ND</td>
<td>7.6-7.9</td>
<td>96時間 LC₅₀ > 0.17 (m)</td>
<td>Adams et al., 1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U.S. EPA GLP 流水機械的分散</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14-28日齢、8-15 mm</td>
<td>U.S. EPA 止水助剤</td>
<td>25-31</td>
<td>塩分濃度10-31%</td>
<td>ND</td>
<td>96時間 LC₅₀ > 550 (n)</td>
<td>Heitmuller et al., 1981</td>
</tr>
<tr>
<td>長期毒性 淡水</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pimephales promelas (ファットヘッド・ミノー)</td>
<td>7.5か月齢 1.24 g</td>
<td>流水助剤</td>
<td>25</td>
<td>ND</td>
<td>ND</td>
<td>56日間 NOEC 致死、成長</td>
<td>>0.062 (m)</td>
</tr>
<tr>
<td>Poecilia reticulata (グッピー)</td>
<td>3-4週齢 0.98 g</td>
<td>助剤</td>
<td>25±1</td>
<td>ND</td>
<td>ND</td>
<td>35日間 NOEC 致死、成長</td>
<td>>0.32 (m)</td>
</tr>
<tr>
<td>Oncorhynchus mykiss (ニジマス)</td>
<td>受精後8時間以内の卵</td>
<td>流水助剤不使用</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>70日間 NOEC ふ化、生存、成長</td>
<td>>0.007 (m)</td>
</tr>
<tr>
<td></td>
<td>受精後72時間以内の卵</td>
<td>流水助剤不使用</td>
<td>10±1</td>
<td>44.0-46.4</td>
<td>7.03-8.22</td>
<td>90日間 NOEC ふ化、生存、成長</td>
<td>>0.502 (m)</td>
</tr>
<tr>
<td>生物種</td>
<td>大きさ/成長段階</td>
<td>試験法/方式</td>
<td>温度 (℃)</td>
<td>硬度 (mg CaCO₃/L)</td>
<td>pH</td>
<td>エンドポイント</td>
<td>濃度 (mg/L)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>受精卵</td>
<td>受精卵</td>
<td>流水機械的</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20分</td>
<td>分散</td>
<td>18.2-25.8</td>
<td>50</td>
<td>7.5±0.2</td>
<td>23日間 LC₅₀ (ふ化 0日目)</td>
<td>139.1</td>
<td>Birge et al., 1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27日間 LC₅₀ (ふ化 4日目)</td>
<td>139.5 (m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>7.4±0.1</td>
<td>23日間 LC₅₀ (ふ化 0日目)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27日間 LC₅₀ (ふ化 4日目)</td>
<td>149.2 (m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102日間 NOEC</td>
<td>0.005 (m)</td>
<td>Mehrle & Mayer, 1976</td>
</tr>
</tbody>
</table>

Carassius auratus	産卵後	流水機械的						
(キンギョ)	1-2時間	分散	18.2-25.8	50	7.5±0.2	4日間 LC₅₀ (ふ化 0日目)	>186	
					8日間 LC₅₀ (ふ化 4日目)	>186		
					200	7.4±0.1	4日間 LC₅₀ (ふ化 0日目)	>191
					8日間 LC₅₀ (ふ化 4日目)	>191		

Micropterus salmoides	産卵後	流水機械的						
(オオクチバス)	1-2時間	分散	18.2-25.8	50	7.5±0.2	3.5日間 LC₅₀ (ふ化 0日目)	65.5	
					7日間 LC₅₀ (ふ化 4日目)	55.7		
					200	7.4±0.1	3.5日間 LC₅₀ (ふ化 0日目)	32.1
					7日間 LC₅₀ (ふ化 4日目)	45.5 (m)		

ND: データなし、(a, n): 被験物質の測定濃度が設定値の±20%以内であったので設定濃度により表示、
(m): 測定濃度、(n): 設定濃度
1) 硬化ヒマシ油 (HCO-30, 100 mg/L)、2) 種類未確認、3) アセトン (< 0.25 mL/L)、
4) ジメチルスルホキシド (0.1 mL/L)、5) アセトン (< 0.28 mL/L)

6.2 内分泌系への影響

in vitro のニジマス肝細胞を用いた試験においてエストロゲン受容体との結合性が 17β-エストラジオールの 1/100,000 であること (Jobling et al., 1995)、また、in vivo のメダカを用いた試験では 1 μM (約 390 μg/L) でメダカの産卵数、ふ化率に影響を及ぼさないということ (Shioda and Wakabayashi, 2000) が報告されている。無脊椎動物については、内分泌系及び生殖系へ影響を及ぼすという知見はこれまで得られていない。

6.3 環境中の生物への影響 (まとめ)

フタル酸ビス(2-エチルヘキシル) の環境中の生物に対する影響については数多くのデータがある。しかし、水への溶解度が低いため、その多くは試験最高濃度 (水への溶解度付近あるいはそれ以下) でも影響がないものが多く、また試験液調製のために助剤を使用した試験では

http://www.cerij.or.jp
溶解度を超えた影響結果を示す報告がある。
藻類に対する生長阻害試験では、セレナストラムを用いて助剤を使用しなかった試験と使用した試験報告があるが、助剤 (界面活性剤) を使用した試験では水への溶解度を遥かに超えていた。助剤を使用しなかった96時間のEC₅₀及びNOECは、それぞれ0.1 mg/L超及び0.1 mg/L以上であった。
無脊椎動物の甲殻類に対する試験結果は、急性毒性試験において48時間あるいは96時間のLC₅₀ (EC₅₀)は0.133 ～100 mg/L超、オオミジンコの繁殖毒性試験においてもNOECが0.077 ～14 mg/Lと非常に変動した結果が報告されている。水への溶解度が低いため、助剤として有機溶剤を用いても試験液表面に膜を形成し、特にミジンコの場合、それらにトラップされるため試験を一層難しくしている。一方、物理的な影響を避けるため、界面活性剤を用いて試験液表面に膜が生じないようにするとともに、試験液中にも不溶物質が存在しないようにして試験をした場合、水中での存在形態が変わるなどしてその毒性値が水への溶解度を超える傾向がある。
オオミジンコの繁殖試験報告の中で算出した値が水への溶解度付近あるいは以下であり、OECDテストガイドラインの有効性基準をほぼ満たしているデータ (NOEC) は0.158 mg/L及び0.640 mg/Lであった。
魚類に対しても同様な傾向がみられ、急性毒性も96時間LC₅₀が0.16 ～770 mg/L超で変動が大きく、また値が確定できないため、これらの値から毒性の強さを評価するのは困難である。
長期毒性として比較的信頼性のあるデータはニジマスの受精卵を用い、ふ化率、致死及び成長を指標とした90日間でのNOECが0.502 mg/L超であったが、この値は水への溶解度を超えていない。
以上から、フタル酸ビス(2-エチルヘキシル)は藻類、甲殻類及び魚類に対して極めて強い影響を与える可能性があることを示唆する報告もあるが、フタル酸ビス(2-エチルヘキシル)の水への溶解性が極めて低いことから信頼できるデータが少ないのが現状である。今後、生物中での取り込みや生態内での代謝等を明らかにした上での有効性あるいは毒性の強さを明確にする必要がある。
得られた毒性データのうち水生生物に対する最小値は、甲殻類であるオオミジンコの繁殖を指標とした21日間NOECの0.158 mg/Lである。

7. ヒト健康への影響
7.1 生体内運命 (図 7-1)
フタル酸ビス(2-エチルヘキシル)は、膵臓から分泌されたリパーゼによりエステルが加水分解を受けフタル酸モノ(2-エチルヘキシル)を生成する。ラットではフタル酸ビス(2-エチルヘキシル)の水への溶解性が極めて低いことから信頼できるデータが少数のが現状である。今後、生物中での取り込みや生態内での代謝等を明らかにした上での有効性あるいは毒性の強さを明確にする必要がある。

トでは\(\omega\)-酸化は主要な代謝経路ではない。ヒトにおいても\(\omega\)-及び\(\omega\)-1酸化によるフタル酸ペシ（2-エチルヘキシル）の代謝経路が存在するとされているが、\(\omega\)-酸化は主要な経路ではない。経口投与では靜脈内投与の場合に比べて2-エチルヘキシル部位でのカルボキシル誘導体が多くみられたが、投与経路の違いに起因するかは明らかではない（WHO, 1992）。

ヒト、マーモセット、ミドリザル及びマウスの尿中にはフタル酸モノ（2-エチルヘキシル）のグルクロン酸抱合体が多く検出されるが、ラットの尿中には検出されない（IARC, 1982）。

図 7-1 フタル酸ジ（2-エチルヘキシル）の代謝経路（WHO, 1992; U.S. NTP-CERHR, 2000）
7.2 疫学調査及び事例（表 7-1）

ボランティア（成人 2 人）へのフタル酸ビス(2-エチルヘキシル) の経口投与で、5,000 mg では何ら症状は認められなかったが、10,000 mg で軽い胃腸障害と下痢がみられている（Shaffer et al., 1945）。

フタル酸ビス(2-エチルヘキシル)を含むポリ塩化ビニル製の吸入チューブを用いた新生児への人工呼吸で、生後 4 週間以内に 3 人の新生児に肺障害による死亡がみられ、その原因としてフタル酸ビス(2-エチルヘキシル) との関連があることが指摘されている（Roth et al., 1988）。しかし、Health Canada はフタル酸ビス(2-エチルヘキシル)の暴露濃度の過大評価を指摘し、FDA は肺障害とフタル酸ビス(2-エチルヘキシル) との関連性について疑問視している（Health Canada, 2002; U.S. FDA, 2001）。

ドイツでフタル酸ビス(2-エチルヘキシル) 製造に 10～30 年間従事した労働者 10 人における染色体異常に関する研究では、暴露濃度 0.0066～0.01 ppm の範囲では染色体異常の出現頻度の増加は報告されていない（Thies and Flieg, 1978）。

プエルトリコ在住の女児の間で乳房発育開始年齢の低下がみられ、症状がみられた女児（6か月～8 歳）の血清サンプル 41 件中 28 件からフタル酸ビス(2-エチルヘキシル) 及びフタル酸ジブチルを主としたフタル酸エステルが検出された。28 サンプル中フタル酸ビス(2-エチルヘキシル)は 25 件（187～2,098 μg/L）、フタル酸ジブチルは 13 件（15～276 μg/L）に検出されている。血清中的フタル酸ビス(2-エチルヘキシル) 及びフタル酸ジブチルの濃度は、同年齢の健常女児の血清サンプル 35 件の値に比して有意に高く、性成熟前乳房発育症の発生に主としてフタル酸ビス(2-エチルヘキシル)を含むフタル酸エステル類が影響を及ぼした可能性が考えられるものの、著者は本症の発生がフタル酸エステルの内分泌影響による影響とはなるも、本症の発生がフタル酸エステルの内分泌影響による影響とはなるも、著者はその後の疫学研究、動物実験での実証が必要であると報告している（Colon et al., 2000）。

| 表 7-1 フタル酸ビス(2-エチルヘキシル) の疫学調査及び事例 |
|-----------------|-----------------|-----------------|-----------------|
| 対象集団・性別・人数 | 暴露経路・暴露濃度 | 症状 | 文献 |
| ボランティア（成人2人） | 経口、5,000 mg 経口、10,000 mg | 症状なし 軽い胃腸障害、下痢 | Shaffer et al., 1945 |
| 新生児（3人） | ポリ塩化ビニル製の吸入チューブを用いた人工呼吸 | 肺障害による死亡 | Roth et al., 1988 |
| フタル酸ビス(2-エチルヘキシル)製造に 10-30 年間従事した労働者10人 | 0.0066 - 0.01 ppm | 染色体異常の出現頻度の増加なし | Thies & Flieg, 1978 |
| プエルトリコ在住の女児 | 血清サンプル 41 件中フタル酸ビス(2-エチルヘキシル)25 件（187-2,098 μg/L）及びフタル酸ジブチル 13 件（15-276 μg/L）を検出。同年齢の健常女児の血清サンプル 35 件の値に比して有意に高い | 血清サンプル 41 件中フタル酸ビス(2-エチルヘキシル)25 件（187-2,098 μg/L）及びフタル酸ジブチル 13 件（15-276 μg/L）を検出。同年齢の健常女児の血清サンプル 35 件の値に比して有意に高い | Colon et al., 2000 |

http://www.cerij.or.jp
7.3 実験動物に対する毒性
7.3.1 急性毒性（表7-2）

ラットに経口及び腹腔内投与した試験における主な症状として、下痢がみられている(Hodge, 1943)。また、ラットで腹腔内投与により自発運動の減少及び行動異常(Rubin and Jaeger, 1973)、静脈内投与により肺の腫大がみられ、組織学的には肺胞壁の浮腫、肥厚、著明な好中球浸潤が認められている(Schulz et al., 1975)。ウサギでは静脈内投与により血圧の低下、呼吸数の増加がみられている(Calley et al., 1966)。

<table>
<thead>
<tr>
<th></th>
<th>マウス</th>
<th>ラット</th>
<th>ウサギ</th>
<th>モルモット</th>
</tr>
</thead>
<tbody>
<tr>
<td>経口 LD₅₀</td>
<td>≥20,000 mg/kg</td>
<td>30,600 mg/kg</td>
<td>33,900 mg/kg</td>
<td>26,300 mg/kg</td>
</tr>
<tr>
<td>吸入 LC₅₀</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>細皮LD₅₀</td>
<td>ND</td>
<td>ND</td>
<td>25,000 mg/kg</td>
<td>10,000 mg/kg</td>
</tr>
<tr>
<td>腹腔LD₅₀</td>
<td>14,000 - 75,000 mg/kg</td>
<td>30,700 mg/kg</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>静脈内LD₅₀</td>
<td>ND</td>
<td>200 - 250 mg/kg</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND: データなし

7.3.2 刺激性及び腐食性

調査した範囲内ではフタル酸ビス(2-エチルヘキシル)の実験動物に対する刺激性及び腐食性に関する報告はない。

7.3.3 感作性

調査した範囲内ではフタル酸ビス(2-エチルヘキシル)の実験動物に対する感作性に関する報告はない。

7.3.4 反復投与毒性（表7-3）

フタル酸ビス(2-エチルヘキシル)の反復投与毒性試験では、肝臓、腎臓及び精巣に影響がみられている。以下にNOAELを決定する際の重要な試験報告を記載する。雌雄のSDラット（5-6週齢）にフタル酸ビス(2-エチルヘキシル)0、5、50、500、5,000 ppm（雄: 0、0.4、3.7、37.6、375 mg/kg/日相当、雌: 0、0.4、4.2、42.2、419 mg/kg相当）を13週間混餌投与した試験で、500 ppm以上の投与群の雄で精巣にセリトリ細胞の空胞化がみられ、5,000 ppmの投与群の雌雄で肝臓及び腎臓重量の増加、肝細胞の肥大、ペルオキシソームの増生、甲状腺に濁胞径の縮小及びコロイド濃度の減少を伴った組織学的変化、5,000 ppmの投与群の雄に貧血、精巣の相対重量の減少、精細管の萎縮、精子数の減少ないし精子の完全消失がみられ、著者らは本試験NOAELを50 ppm（3.7mg/kg/日）としている(Poon et al., 1997)。

よって、経口投与でのNOAELは、SDラットを用いた13週間の経口投与試験(Poon et al., 1997)
の50 ppm (3.7 mg/kg/日) である。

<table>
<thead>
<tr>
<th>动物種</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウス B6C3F1</td>
<td>混餌</td>
<td>4週間</td>
<td>0, 1,000, 5,000, 10,000, 25,000 ppm (雄: 0, 245, 1,209, 2,579, 6,992 mg/kg/日相当 雌: 0, 270, 1,427, 2,897, 7,899 mg/kg/日相当、著者換算)</td>
<td>5,000 ppm以上の雌雄で肝臓の壊死を伴う重量増加及び雄で炎症を伴う腎重量の減少と貧血 25,000 ppmの雌雄で胸腺の萎縮、雄で精巣重量の減少及び精巣の萎縮、雌で卵巣黄体の消失 NOAEL = 雄 245mg/kg/日、雌 270mg/kg/日</td>
<td>Hazleton Biotechnologies Co., 1992a</td>
</tr>
<tr>
<td>マウス B6C3F1</td>
<td>混餌</td>
<td>13週間</td>
<td>0, 800, 1,600, 3,100, 6,300, 12,500 ppm (雄: 0, 144, 289, 578, 1,156, 2,311 mg/kg/日相当 雌: 0, 157, 314, 629, 1,258, 2,516 mg/kg/日相当、U.S. NTP-CERHR 1)換算)</td>
<td>5,100 ppm以上の雄で体重増加抑制 NOAEL = 雄 289mg/kg/日、雌 314mg/kg/日</td>
<td>U.S. NTP, 1982</td>
</tr>
<tr>
<td>ラット F344</td>
<td>混餌</td>
<td>21日</td>
<td>0, 0.01, 0.1, 0.6, 1, 2, 2.5% (雄: 0, 11, 101, 667, 1,224, 2,101 mg/kg/日相当 雌: 0, 12, 109, 643, 1,197, 1,892 mg/kg/日相当、U.S. NTP-CERHR 1)換算)</td>
<td>0.6 %以上の雌雄で組織学的変化を伴う肝臓重量の増加 2.5 %の雄で精巣重量の減少と精巣の萎縮 NOAEL = 雄 101mg/kg/日、雌 109mg/kg/日</td>
<td>BIBRA, 1984</td>
</tr>
<tr>
<td>ラット F344</td>
<td>混餌</td>
<td>13週間</td>
<td>0, 1,000, 4,000, 12,500, 25,000 ppm (雄: 0, 63, 261, 850, 1,724, 4,000 mg/kg/日相当 雌: 0, 73, 302, 918, 1,858 mg/kg/日相当、著者換算)</td>
<td>1,000 ppmの雄で肝臓重量の増加 4,000 ppmの雌雄で肝臓重量の増加、雄で腎臓重量の増加と赤血球の減少 12,500 ppm以上の雌雄で肝臓及び腎臓重量の増加及び組織学的変化、肝細胞の腫大、腎近位尿細管細胞の色素沈着 25,000 ppmの雌で精巣重量の減少、無精子症を伴う精巣の萎縮、下垂体及び副腎の組織学的変化 25,000 ppmの雌で子宮重量の減少 LOAEL = 63 mg/kg/日</td>
<td>Hazleton Biotechnologies Co., 1992b</td>
</tr>
</tbody>
</table>
7.3.5 生殖・発生毒性（表 7-4）

フタル酸ビス（2-エチルヘキシル）は生殖・発生毒性試験が数多く実施されている。これら
の試験の中で最も低用量で影響がみられたのは、雌雄の ICR マウスにフタル酸ビス（2-エチルヘ
キシル）0, 0.01, 0.1, 0.3 % (0, 14, 141, 425 mg/kg/日相当) を 106 日間 (同居前 7 日間及び 98
日間の同居中) 混餌投与した試験であり、0.1％投与群で妊娠率の低下、産児数及び生存児数の
減少がみられ、0.3％投与群では妊娠が成立しなかった。また組換え交配試験では、最高用量の
雄と対照群の雌の交配で妊娠率、産児数、生存出生児率の減少がみられ、対照群の雄と最高用
量群の雌の交配で 1 匹も妊娠が成立しなかった (Lamb et al., 1987)。よって本評価では本試験の
NOAEL を 0.01% (14 mg/kg/日相当) と判断した。
<table>
<thead>
<tr>
<th>動物種</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウス ICR 雌 13-14匹/群</td>
<td>強制経口</td>
<td>妊娠 6 - 15日</td>
<td>0、40、200、1,000 mg/kg/日</td>
<td>視動物への毒性：1,000 mg/kg/日で体重減少、肝相対重量の増加
胎児への毒性：200 mg/kg/日で外表及び内臓奇形の増加
1,000 mg/kg/日で胎児の生存率低下、胎児体重の減少、骨格、内臓奇形の増加
NOAEL = 200 mg/kg/日（親動物）
NOAEL = 40 mg/kg/日（胎児）</td>
<td>U.S. NTP-CERHR, 2000</td>
</tr>
<tr>
<td>マウス ICR 雌 30-31匹/群</td>
<td>混餌</td>
<td>妊娠 0 - 17日</td>
<td>0、0.025、0.05、0.1、0.15％
(0、44、91、191、293 mg/kg/日相当、著者換算)</td>
<td>視動物への毒性：0.05％以上で嗜眠状態
0.1％以上で肝臓重量の増加
胎児への毒性：0.05％で奇形胎児の増加
0.1％以上で吸収胚、死亡胎児の増加、生存胎児数、生存胎児の体重減少
NOAEL = 44 mg/kg/日</td>
<td>Tyl et al., 1984, 1988</td>
</tr>
<tr>
<td>マウス ICR-JCL 雄 7-24匹/群</td>
<td>混餌</td>
<td>妊娠 0 - 18日</td>
<td>0、0.05、0.1、0.2、0.4、1.0％
(0、70、190、400、830、2,200 mg/kg/日相当、著者換算)</td>
<td>視動物への毒性：0.2％以上で体重減少（妊娠18日）
胎児への毒性：0.1％以上で胎児の死亡率の増加
0.2％で胎児体重の減少、奇形胎児の増加
0.4％以上で100％の胎児の死亡
NOAEL = 44 mg/kg/日</td>
<td>Shiota et al., 1980; 1985</td>
</tr>
<tr>
<td>マウス ICR 雄 28-29匹/群</td>
<td>混餌</td>
<td>妊娠 0 - 17日</td>
<td>0、0.01、0.025、0.05％
(0、19、48、95 mg/kg/日相当、U.S. NTP-CERHR換算)</td>
<td>0.05％で胎児の死亡率と新生児の死亡率の増加
NOAEL = 0.01％ (14 mg/kg/日相当) （本評価書の判断）</td>
<td>Price et al., 1988</td>
</tr>
<tr>
<td>マウス ICR 雌雄 20匹/群 対照群：40匹</td>
<td>混餌</td>
<td>11週齢 106日間</td>
<td>0、0.01、0.1、0.3％
(0、14、141、425 mg/kg/日相当、U.S. NTP-CERHR換算)</td>
<td>0.1％で妊娠率の低下、産児数及び生存児数の減少
0.3％で妊娠不成立
組換え交配試験では、最高用量の雄と対照群の雌の交配で妊娠率、産児数、生存出生児率の減少、対照群の雄と最高用量群の雌の交配で妊娠不成立
NOAEL =0.01％ (14 mg/kg/日相当)（本評価書の判断）</td>
<td>Lamb et al., 1987</td>
</tr>
<tr>
<td>ラット F344 雌 匹/群不明</td>
<td>混餌</td>
<td>妊娠 0 - 20日</td>
<td>0、0.25、0.5、1.0％
(0、164、313、573 mg/kg/日相当、U.S. NTP-CERHR換算)</td>
<td>視動物への毒性：0.5％以上で摂餌量の低下
1.0％で体重増加の抑制
胎児への毒性：0.5％で胎児の成長低下
1.0％で胎児の体重と成長の低下</td>
<td>Price et al., 1986</td>
</tr>
<tr>
<td>ラット Wistar 雄 9-10匹/群</td>
<td>強制経口</td>
<td>妊娠6 - 15日</td>
<td>0、40、200、1,000 mg/kg/日</td>
<td>視動物への毒性：1,000 mg/kg/日で肝臓及び腎臓の相対重量の増加、体重及び子宮重量の減少、吸収胚の増加
胎児への毒性：</td>
<td>Hellwig et al., 1997</td>
</tr>
</tbody>
</table>
7.3.6 遺伝毒性（表 7-5）

フタル酸ビス(2-エチルヘキシル)は、in vitro での遺伝子突然変異、染色体異常、姉妹染色体交換等、in vivo での優性致死、伴性劣性致死、小核等多くの試験で陰性の結果が得られている。一方、マウスリンパ腫細胞を用いる遺伝子突然変異試験で 7.5〜20μg/mL の用量範囲で S9 の無添加の場合に陽性を示し、チャイニーズハムスターの肝細胞でも 25〜50μg/mL の用量範囲で突然変異体が陽性との報告がある。

表 7-5 フタル酸ビス(2-エチルヘキシル)の遺伝毒性試験結果

<table>
<thead>
<tr>
<th>試験名</th>
<th>試験材料・物質組成</th>
<th>用量等</th>
<th></th>
<th></th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>in vitro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>復帰突然変異試験</td>
<td>ネズミデノフ菌 TA98、TA100、TA1535、TA1537、TA1538 (+/- S9)</td>
<td></td>
<td></td>
<td></td>
<td>Ashby et al., 1985; Yoshikawa et al., 1983; Zeiger et al., 1985</td>
</tr>
<tr>
<td></td>
<td>大腸菌 WP2 (+/- S9)</td>
<td></td>
<td></td>
<td></td>
<td>Yoshikawa et al., 1983</td>
</tr>
<tr>
<td>染色体異常試験</td>
<td>ラット肝株細胞</td>
<td></td>
<td></td>
<td></td>
<td>Priston & Dean, 1985</td>
</tr>
<tr>
<td></td>
<td>チャイニーズハムスターCHO細胞 (+/- S9)</td>
<td></td>
<td></td>
<td></td>
<td>Phillips et al., 1982</td>
</tr>
<tr>
<td>不定期 DNA合成試験</td>
<td>ラット初代培養肝細胞</td>
<td></td>
<td></td>
<td></td>
<td>Probst & Hill, 1985</td>
</tr>
<tr>
<td>姉妹染色体交換試験</td>
<td>ラット肝株細胞</td>
<td></td>
<td></td>
<td></td>
<td>Priston & Dean, 1985</td>
</tr>
<tr>
<td></td>
<td>チャイニーズハムスターCHO細胞 (+/- S9)</td>
<td></td>
<td></td>
<td></td>
<td>Douglas et al., 1986</td>
</tr>
<tr>
<td>遺伝子突然変異試験</td>
<td>マウスリンパ腫細胞(L5178Y) (-S9) 7.5-20μg/mL で陽性</td>
<td></td>
<td></td>
<td></td>
<td>Ashby et al., 1985</td>
</tr>
<tr>
<td></td>
<td>チャイニーズハムスターの肝細胞 25-50μg/mL</td>
<td></td>
<td></td>
<td></td>
<td>Ashby et al., 1985</td>
</tr>
<tr>
<td>試験名</td>
<td>試験材料・物質組成用量等</td>
<td>結果</td>
<td>文献</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------------------</td>
<td>------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>優性致死試験</td>
<td>ICRCD 雄マウス、12.5-25g/kgの単回経口投与</td>
<td>-</td>
<td>Hamano et al., 1979</td>
<td></td>
<td></td>
</tr>
<tr>
<td>伴性劣性致死試験</td>
<td>ショウジョウバエ</td>
<td>-</td>
<td>Yoon et al., 1985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>小核試験</td>
<td>マウス(末梢血)</td>
<td>-</td>
<td>Douglas et al., 1986</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.3.7 発がん性 (表 7-6, 7-7)

ラットやマウスでは反復投与毒性試験でペルオキシソームの増生がみられるが、霊長類では必ずしも生じないこと、また、ヒトの肝臓から単離した培養肝細胞を用いた数多くの in vitro 実験で、ラット肝細胞では生じるペルオキシソーム増生に関連した反応がヒトの細胞では生じないことを理由に、IARC は 2000 年 2 月にフタル酸ビス(2-エチルヘキシル) をグループ 2B (ヒトに対して発がん性がある可能性がある物質) からグループ 3 (ヒトに対する発がん性については分類できない物質) に変更している (IARC, 2000)。

<table>
<thead>
<tr>
<th>機関/出典</th>
<th>分 類</th>
<th>分 類 基 準</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGIH (2001)</td>
<td>A3</td>
<td>ヒトへの関連性は不明であるが、実験動物で発がん性が確認された物質。</td>
</tr>
<tr>
<td>日本産業衛生学会 (2001)</td>
<td>第 2 群 B</td>
<td>人間に対しておそらく発がん性があると考えられる物質。証拠が比較的十分でない物質。</td>
</tr>
<tr>
<td>U.S. NTP (2001)</td>
<td>R</td>
<td>合理的にヒトに対して発がん性があることが予想される物質。</td>
</tr>
</tbody>
</table>

1): 2000 年に従来のグループ 2B からグループ 3 に変更した

フタル酸ビス(2-エチルヘキシル) の発がん性については、反復投与毒性試験で肝ペルオキシソームの増生がみられることから、その関連性の試験が多く行われており、肝ペルオキシソームの増生に伴い、肝細胞の増殖が促進されてラットの肝がんをプロモートするとの報告もある (Cattley and Popp, 1989)。また、フタル酸ビス(2-エチルヘキシル) の肝臓におけるペルオキシソームの増生作用に関しては、動物種によって著しく異なることが知られている。フタル酸モノ (2-エチルヘキシル) 及び代謝物のフタル酸 2-エチル-5-オキソヘキシルはラット培養肝細胞では非常に高いペルオキシソーム増生作用を示すが、ヒトやカニュウサル、マーモセット、モルモットの肝細胞ではほとんどペルオキシソーム増生作用を示さない (WHO, 1992)。
表 7-7 フタル酸ビス(2-エチルヘキシル) の発がん性試験結果

<table>
<thead>
<tr>
<th>動物種</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結果</th>
<th>記載文書</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウス B6C3F1 雌雄</td>
<td>混餌</td>
<td>103 週間</td>
<td>0, 3,000, 6,000 ppm (雄: 0, 672, 1,325 mg/kg/日相当、雌: 0, 799, 1,821 mg/kg/日相当)</td>
<td>雄: 1,325 mg/kg/日 (\rightarrow) 肝細胞癌発生率増加 雌: 799 mg/kg/日 (\rightarrow) 肝細胞癌発生率増加</td>
<td>U.S. NTP, 1982</td>
</tr>
<tr>
<td>ラット F344 雌雄</td>
<td>混餌</td>
<td>103 週間</td>
<td>0, 6,000, 12,000 ppm (雄: 0, 322, 674 mg/kg/日相当、雌: 0, 394, 774 mg/kg/日相当)</td>
<td>6,000 ppm 雄: 肝細胞腺腫発生率増加 12,000 ppm 雄: 肝細胞腺腫発生率増加、肝細胞癌発生率増加(有意)</td>
<td>U.S. NTP-CERHR, 2000</td>
</tr>
<tr>
<td>マウス B6C3F1 雌雄</td>
<td>混餌</td>
<td>104 週間</td>
<td>0, 100, 500, 1,500, 6,000 ppm (雄: 0, 19, 99, 292, 1,266 mg/kg/日相当、雌: 0, 24, 117, 354, 1,458 mg/kg/日相当)</td>
<td>500 ppm 以上で肝腫瘍の発生頻度増加</td>
<td>David et al., 1999</td>
</tr>
<tr>
<td>ラット F344 雌雄</td>
<td>混餌</td>
<td>104 週間</td>
<td>0, 100, 500, 2,500, 12,500 ppm (雄: 0, 5.8, 29, 147, 789 mg/kg/日相当、雌: 0, 7.3, 36, 182, 939 mg/kg/日相当)</td>
<td>2,500 ppm 以上で肝腫瘍の発生頻度増加</td>
<td></td>
</tr>
</tbody>
</table>

7.3.8 内分泌系への影響

フタル酸ビス(2-エチルヘキシル)の内分泌系への影響を調べるための in vitro 実験において、エストロゲン受容体に対する結合性及び受容体結合を介して起こる応答性は、ほとんどの試験において弱いか陰性であるという結果が示されている。すなわち、エストロゲン受容体を介する内分泌かく乱作用を有する可能性は低いものと考えられる。U.S. NTP の CERHR (Center for Evaluation of Risks to Human Reproduction) のエキスパート・パネルの評価文書によると、妊娠ラットにフタル酸ビス(2-エチルヘキシル)を経口投与した場合、F1 雄に肛門-生殖突起間距離 (AGD) の短縮、乳頭遺残、尿道下裂等の種々の奇形や異常が認められること、また、尿道下裂等の奇形の誘発機序に関して、テストステロン生合成系の阻害によるもので、アンドロゲン受容体を介さない抗アンドロゲン作用によるものであると報告されている。

7.4 ヒト健康への影響（まとめ）

ヒトにおいて、フタル酸ビス(2-エチルヘキシル) 10,000 mg の経口摂取で、軽い胃腸障害と下痢がみられている。

フタル酸ビス(2-エチルヘキシル)の実験動物への急性毒性は、マウスに対する經口投与での LD50 は、20,000mg/kg を超え、ラットに対する経口投与での LD50 は 30,600 mg/kg である。
フタル酸ビス(2-エチルヘキシル) が刺激性及び感作性を有するとの報告はない。

フタル酸ビス(2-エチルヘキシル) の反復投与毒性試験は、肝臓、腎臓及び精巣が標的器官であることを示しており、経口投与での NOAEL は、ラットを用いた 13 週間の混餌試験の 50 ppm (3.7 mg/kg/日) である。

生殖毒性においては、妊娠率の低下、胎児体重の減少、奇形胎児の増加、胎児の死亡等が報告されており、経口投与での NOAEL は、妊娠率の低下、生産数及び生存児数の減少がみられた ICR マウスを用いた 106 日間の混餌試験の 0.01% (14 mg/kg/日 相当) である。

遺伝毒性については、フタル酸ビス(2-エチルヘキシル)は、in vitro での遺伝子突然変異、染色体異常、姉妹染色分体交換等、in vivo での優性致死、伴性劣性致死、小核等多くの試験で陰性の結果が得られている。一方、マウスリンパ腫細胞を用いる遺伝子突然変異試験で 7.5～20µg/mL の用量範囲で S9 の無添加の場合に陽性を示し、チャイニーズハムスターの肝細胞でも 25～50µg/mL の用量範囲で突然変異体が陽性との報告がある。

発がん性については、ラットやマウスにおいて肝ペルオキシソームの増生に伴い肝細胞の増殖が促進されて腫瘍性変化を引き起こし肝がんをプロモートするなどの報告があるが、鷹長類では必ずしもペルオキシソームの増生が生じないこと、また、ヒトの肝臓から単離した培養肝細胞を用いた数多くの in vitro 実験で、ラット肝細胞では生じるペルオキシソーム増生に関連した反応がヒトの細胞では生じないことを理由に、IARC は 2000 年 2 月にフタル酸ビス(2-エチルヘキシル) をグループ 2B (ヒトに対して発がん性がある可能性がある物質) からグループ 3 (ヒトに対する発がん性については分類できない物質) に変更している (IARC, 2000)。

フタル酸ビス(2-エチルヘキシル) の内分泌系への影響を調べるための in vitro 実験において、エストロゲン受容体に対する結合性及び受容体結合を介して起こる応答性は、ほとんどの試験において弱いか陰性であるという結果が示されている。すなわち、エストロゲン受容体を介する内分泌かく乱作用を有する可能性は低いものと考えられる。U.S. NTP の CERHR (Center for Evaluation of Risks to Human Reproduction) のエキスパート・パネルの評価文書によると、妊娠ラットにフタル酸ビス(2-エチルヘキシル)を経口投与した場合、F1 雄に肛門・生殖突起間距離 (AGD) の短縮、乳頭遺残、尿道下裂等の種々の奇形や異常が認められること、また、尿道下裂等の奇形の誘発機序に関して、テストステロン生合成系の阻害によるもので、アンドロゲン受容体を介さない抗アンドロゲン作用によるものであると報告されている。

以上、動物実験の結果から予想されるヒトの健康に対する主たる影響としては、反復投与毒性試験における精巣重量の減少と精巣の萎縮が挙げられ、NOAEL は 3.7 mg/kg/日である。また、生殖・発生毒性試験では、胎児の生存率の減少や成長の低下、外表及び内臓奇形の誘発などがみられており、NOAEL は 14 mg/kg/日である。
ACGIH, American Conference of Governmental Industrial Hygienists (2001) Documentation of the threshold limit values and biological exposure indices, 7th ed. Cincinnati, OH.

Cohle, P. and Stratton, J. (1992) Early life-stage toxicity of DEHP (CAS No. 117-81-7) to Rainbow trout (Oncorhynchus mykiss Walbaum 1792) in a flow-through sytem. ABC inc., Final report #36568. Sponsored by BASF AG. BASF project no. 52FO7822/875236.

ECETOC, European Chemical Industry Ecology and Toxicology Centre (1985) An assessment of the occurrence and

1) データベースの検索を 2001年4月に実施し、発生源情報等で新たなデータを入手した際には文献を更新した。また、2004年4月に国際機関等による新たなリスク評価書の公開の有無を調査し、キースタディとして採用すべき文献を入手した際には追加した。

21

http://www.cerij.or.jp

Hazleton Biotechnologies Co. (1992a) A subchronic (4-week) dietary oral toxicity study of di(2-ethylhexyl) phthalate in B6FC3F1 mice. Submitted to Office of Toxic Substances, US Environmental Protection Agency (Microfiche No. OTS0535433).

Linden, E., Bengtsson, B.E., Svanberg, O. and Sundstrom, G. (1979) The acute toxicity of 78 chemicals and pesticide formulations against two brackish water organisms, the Bleak (Alburnus alburnus) and the Harpacticoid Nitocra spinipes, Chemosphere, 8, 843-851.

http://www.cerij.or.jp

http://www.cerij.or.jp
環境庁環境化学物質研究会編（1988）環境化学物質要覧、丸善、東京。
経済産業省（2001）環境ホルモン効果に関する評価・試験法開発報告書、平成12年度経済産業省環境対応技術開発等委託調査研究、化学物質評価研究機構。
経済産業省、環境省（2003a）特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律（化学物質排出把握管理促進法）に基づく届出排出量及び移動量並びに届出外排出量の集計結果について（排出年度：平成13年度）。
国土交通省（2001）下水道における内分泌撹乱化学物質に関する調査報告書、都市・地域整備局下水道部、平成13年3月
製品評価技術基盤機構（2004）化学物質のリスク評価及びリスク評価手法の開発プロジェクト平成15年度研究報告書（新エネルギー・産業技術総合開発機構委託事業）。
日本化学工業協会（2002）日本化学工業協会のレスポンシブル・ケアによるPRTRの実施について－2002年度化学物質排出量調査結果－（2001年度実績）。
日本産業衛生学会（2001）許容濃度等の勘告、産衛誌、43、95-119。
フタル酸エステル類リスク評価管理研究会（2004）フタル酸エステル類リスク評価管理研究会中間報告書（製品評価技術基盤機構）。

http://www.cerij.or.jp
CERI 有害性評価書 フタル酸ビス(2-エチルヘキシル)

平成 18 年 3 月 1 日 発行

編集 財団法人化学物質評価研究機構
安全性評価技術研究所

〒112-0004 東京都文京区後楽 1-4-25 日教販ビル 7 階
電話 03-5804-6136 FAX 03-5804-6149

無断転載を禁じます。

http://www.cerij.or.jp