CERI 有害性評価書

無水フタル酸
Phthalic anhydride

CAS 登録番号：85-44-9

http://www.cerij.or.jp
CERI 有害性評価書について

化学物質は、私たちの生活に欠かせないものですが、環境中への排出などに伴い、ヒトの健康のみならず、生態系や地球環境への有害な影響が懸念されています。有害な影響の程度は、有害性及び暴露量を把握することにより知ることができます。暴露量の把握には、実際にモニタリング調査を実施する他に、特定化学物質の環境への排出量の把握等及び管理の促進に関する法律（化学物質排出把握管理促進法）に基づく化学物質の排出量情報の活用などが考えられます。

CERI 有害性評価書は、化学物質評価研究機構（CERI）の責任において、原版である化学物質有害性評価書（http://www.safe.nite.go.jp/data/sougou/pk_list.html?table_name=hyoka）を編集したものです。実際に化学物質を取り扱っている事業者等が、化学物質の有害性について、その全体像を把握する際に利用していただくことを目的としています。

予想することが困難な地球環境問題や新たな問題に対処していくためには、法律による一律の規制を課すだけでは十分な対応が期待できず、事業者自らが率先して化学物質を管理するという考え方が既に国際的に普及しています。こうした考え方にの下では、化学物質の取り扱い事業者は、法令の遵守はもとより、法令に規定されていない事項であっても環境影響や健康被害を未然に防止するために必要な措置を自主的に講じることが求められ、自らが取り扱っている化学物質の有害性を正しく認識しておくことが必要になります。このようなときに、CERI 有害性評価書を活用いただければと考えています。

CERI 有害性評価書は、化学物質の有害性の全体像を把握していただく為に編集したものですので、さらには詳細な情情報を必要とする場合には、化学物質有害性評価書を閲覧していただくことをお勧めいたします。また、文献一覧は原版と同じものを用意し、作成時点での重要文献を網羅的に示していますので、独自に調査を進める場合にもお役に立つものと思います。

なお、化学物質有害性評価書は、新エネルギー・産業技術総合開発機構（NEDO）からの委託事業である「化学物質総合評価管理プログラム」の中の「化学物質のリスク評価およびリスク評価手法の開発プロジェクト」において作成したものです。
1. 化学物質の同定情報

<table>
<thead>
<tr>
<th>物質名</th>
<th>無水フタル酸</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,3-イソベンゾフランジオン</td>
</tr>
<tr>
<td></td>
<td>1,2-ベンゼンジカルボン酸無水物</td>
</tr>
<tr>
<td>化学物質排出把握管理促進法</td>
<td>政令番号 1-312</td>
</tr>
<tr>
<td>化学物質審査規制法</td>
<td>官報公示整理番号 3-1344</td>
</tr>
<tr>
<td>CAS登録番号</td>
<td>85-44-9</td>
</tr>
</tbody>
</table>

構造式

分子式 | C₈H₄O₃ |
分子量 | 148.12 |

2. 我が国における法規制

<table>
<thead>
<tr>
<th>法 律 名</th>
<th>項 目</th>
</tr>
</thead>
<tbody>
<tr>
<td>化学物質排出把握管理促進法</td>
<td>第一種指定化学物質</td>
</tr>
<tr>
<td>労働基準法</td>
<td>疾病化学物質</td>
</tr>
<tr>
<td>労働安全衛生法</td>
<td>名称等を通知すべき有害物</td>
</tr>
<tr>
<td>海洋汚染防止法</td>
<td>有害液体物質 C 類 (溶融状のもの)</td>
</tr>
<tr>
<td>船舶安全法</td>
<td>腐食性物質 (無水マレイン酸の含有量が0.05質量%を超えるもの)</td>
</tr>
<tr>
<td>航空法</td>
<td>腐食性物質 (無水マレイン酸の含有量が0.05質量%を超えるもの)</td>
</tr>
<tr>
<td>港則法</td>
<td>腐食性物質 (溶融状のものであって、無水マレイン酸の含有量が0.05質量%を超えるもの)</td>
</tr>
</tbody>
</table>

注：純粋な無水フタル酸には腐食性はないが、無水マレイン酸には腐食性がある。

3. 物理化学的性状

無水フタル酸は、容易に加水分解されてフタル酸になるので、フタル酸 (CAS 登録番号 88-99-3) についても併記する。

a. 無水フタル酸

<table>
<thead>
<tr>
<th>項 目</th>
<th>特 性 値</th>
<th>出 典</th>
</tr>
</thead>
<tbody>
<tr>
<td>外観</td>
<td>白色固体</td>
<td>Merck, 2001</td>
</tr>
<tr>
<td>融点</td>
<td>130.8℃</td>
<td>Merck, 2001</td>
</tr>
<tr>
<td>沸点</td>
<td>295℃</td>
<td>Merck, 2001</td>
</tr>
<tr>
<td>引火点</td>
<td>152℃ (密閉式)</td>
<td>IPCS, 2003 ; NFPA, 2002</td>
</tr>
</tbody>
</table>

http://www.cerij.or.jp
<table>
<thead>
<tr>
<th>項目</th>
<th>特性値</th>
<th>出典</th>
</tr>
</thead>
<tbody>
<tr>
<td>発火点</td>
<td>570℃</td>
<td>IPCS, 2003; NFPA, 2002</td>
</tr>
<tr>
<td>爆発限界</td>
<td>1.7〜10.4 vol%（空気中）</td>
<td>IPCS, 2003; NFPA, 2002</td>
</tr>
<tr>
<td>比重</td>
<td>1.527（15℃/4℃）</td>
<td>有機合成化学協会:有機化学辞典, 1985</td>
</tr>
<tr>
<td>蒸気密度</td>
<td>5.11（空気 = 1）</td>
<td>計算値</td>
</tr>
<tr>
<td>蒸気圧</td>
<td>0.03 Pa (20℃), 0.1 Pa (30℃)</td>
<td>Verschueren, 2001</td>
</tr>
<tr>
<td>分配係数</td>
<td>データなし</td>
<td></td>
</tr>
<tr>
<td>解離定数</td>
<td>解離基なし</td>
<td></td>
</tr>
<tr>
<td>土壌吸着係数</td>
<td>データなし</td>
<td></td>
</tr>
<tr>
<td>蒸気密度</td>
<td>水: 6.4 g/L (20℃)注</td>
<td>Verschueren, 2001</td>
</tr>
<tr>
<td>ヘンリー定数</td>
<td>データなし</td>
<td></td>
</tr>
<tr>
<td>気相, 20℃）</td>
<td>1 ppm = 6.16 mg/m³</td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td>昇華性あり</td>
<td>Merck, 2001</td>
</tr>
<tr>
<td></td>
<td>容易に加水分解されてフタル酸になる（5.2.1参照）</td>
<td></td>
</tr>
</tbody>
</table>

b. フタル酸
分子式: C₄H₆O₄
分子量: 166.13

<table>
<thead>
<tr>
<th>項目</th>
<th>特性値</th>
<th>出典</th>
</tr>
</thead>
<tbody>
<tr>
<td>外観</td>
<td>固体</td>
<td>Merck, 2001</td>
</tr>
<tr>
<td>融点</td>
<td>230℃</td>
<td>Merck, 2001</td>
</tr>
<tr>
<td>沸点</td>
<td>なし注</td>
<td>Merck, 2001</td>
</tr>
<tr>
<td>引火点</td>
<td>168℃（開放式）</td>
<td>IPCS, 1999</td>
</tr>
<tr>
<td>発火点</td>
<td>データなし</td>
<td></td>
</tr>
<tr>
<td>蒸気密度</td>
<td>5.73（空気 = 1）</td>
<td>計算値</td>
</tr>
<tr>
<td>爆発限界</td>
<td>データなし</td>
<td></td>
</tr>
<tr>
<td>比重</td>
<td>1.593（20℃/4℃）</td>
<td>Dean, 1999</td>
</tr>
<tr>
<td>蒸気圧</td>
<td>データなし</td>
<td></td>
</tr>
<tr>
<td>分配係数</td>
<td>log Kow = 0.73 (測定値)</td>
<td>SRC:KowWin, 2004</td>
</tr>
<tr>
<td></td>
<td>1.07 (推定値)</td>
<td></td>
</tr>
<tr>
<td>解離定数</td>
<td>pKa₁ = 2.950（25℃）</td>
<td>Dean, 1999</td>
</tr>
<tr>
<td></td>
<td>pKa₂ = 5.408（25℃）</td>
<td></td>
</tr>
<tr>
<td>土壌吸着係数</td>
<td>Koc = 73（非解離状態での推定値）</td>
<td>SRC:PeKocWin, 2004</td>
</tr>
<tr>
<td>溶解性</td>
<td>水: 5.4 g/L（14℃）</td>
<td>Verschueren, 2001</td>
</tr>
<tr>
<td></td>
<td>エタノール: 1 g/10 mL</td>
<td>Merck, 2001</td>
</tr>
</tbody>
</table>

http://www.cerij.or.jp
<table>
<thead>
<tr>
<th>項目</th>
<th>特性値</th>
<th>出典</th>
</tr>
</thead>
<tbody>
<tr>
<td>エーテル:</td>
<td>1 g/205 mL</td>
<td></td>
</tr>
<tr>
<td>クロロホルム:</td>
<td>不溶</td>
<td></td>
</tr>
<tr>
<td>ヘンリー定数</td>
<td>(2.21 \times 10^{-7} \text{ Pa} \cdot \text{m}^3/\text{mol} (25 \degree \text{C}、推定値))</td>
<td>SRC: HenryWin, 2004</td>
</tr>
</tbody>
</table>
| 换算係数 | (気相、20\degree \text{C}) \[1 \text{ppm} = 6.91 \text{mg/m}^3 \]
| | \[1 \text{mg/m}^3 = 0.145 \text{ppm}\] | 計算値 |

4. 製造輸入量・用途情報 (表 4-1、表 4-2)

表 4-1 無水フタル酸の製造・輸入量等 (トン)

<table>
<thead>
<tr>
<th>年</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造量</td>
<td>301,367</td>
<td>290,349</td>
<td>259,267</td>
<td>261,904</td>
<td>261,766</td>
</tr>
<tr>
<td>輸入量</td>
<td>2,126</td>
<td>1,939</td>
<td>1,352</td>
<td>126</td>
<td>1</td>
</tr>
<tr>
<td>輸出量</td>
<td>72,078</td>
<td>64,425</td>
<td>53,808</td>
<td>69,861</td>
<td>70,506</td>
</tr>
<tr>
<td>国内供給量</td>
<td>231,415</td>
<td>227,863</td>
<td>206,811</td>
<td>192,169</td>
<td>191,261</td>
</tr>
</tbody>
</table>

出典: 経済産業省 (2004); 財務省 (2005)
注 1: 製造量は出荷量を意味し、自家消費分を含まない。
注 2: 国内供给量 = 製造量 + 輸入量 - 輸出量

表 4-2 用途別使用量の割合

<table>
<thead>
<tr>
<th>用途</th>
<th>割合 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>フタル酸系可塑剂 (DEHP、DBP等) 原料</td>
<td>74.5</td>
</tr>
<tr>
<td>不飽和ポリエステル樹脂原料</td>
<td>10.6</td>
</tr>
<tr>
<td>塗料樹脂原料</td>
<td>7.2</td>
</tr>
<tr>
<td>染顔料中間体 (ヘタリン、フタルミド、シアン酸、o-ベンゾイル、安息香酸)合成原料</td>
<td>2.9</td>
</tr>
<tr>
<td>その他</td>
<td>4.8</td>
</tr>
<tr>
<td>合計</td>
<td>100</td>
</tr>
</tbody>
</table>

その他の用途として、有機ゴム製品、医薬品、香料の合成原料として使用されることが考えられる (化学工業日報社, 2004)。

5. 環境中運命

5.1 大気中での安定性 (表 5-1、表 5-2)

無水フタル酸は、恵み性はあるものの、常温では固体であり、蒸気圧は極めて低い (0.03 Pa、20\degree \text{C}) のので (3章参照)、大気中においては、蒸気ではほとんど存在しない。また、その構造から容易に加水分解される (5.2.1参照)。大気中に粉じんとして排出された場合には、雨滴と接触すると、速やかに加水分解されてフタル酸になり、雨滴と共に降下すると推定される。

フタル酸についても参考までに併記する。

http://www.cerij.or.jp
表 5-1 無水フタル酸の対流圏大気中での反応性

<table>
<thead>
<tr>
<th>対象</th>
<th>反応速度定数 (cm³/分子/秒)</th>
<th>濃度 (分子/cm³)</th>
<th>半減期</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH ラジカル</td>
<td>7.49×10⁻¹³ (25℃、推定値)</td>
<td>5×10⁻⁶ ～ 1×10⁰</td>
<td>10～20日</td>
</tr>
<tr>
<td>オゾン</td>
<td>データなし</td>
<td></td>
<td></td>
</tr>
<tr>
<td>硝酸ラジカル</td>
<td>データなし</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

出典：SRC:AopWin, 2004 (反応速度定数)

表 5-2 フタル酸の対流圏大気中での反応性

<table>
<thead>
<tr>
<th>対象</th>
<th>反応速度定数 (cm³/分子/秒)</th>
<th>濃度 (分子/cm³)</th>
<th>半減期</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH ラジカル</td>
<td>1.24×10⁻¹² (25℃、推定値)</td>
<td>5×10⁻⁶ ～ 1×10⁰</td>
<td>6～10日</td>
</tr>
<tr>
<td>オゾン</td>
<td>データなし</td>
<td></td>
<td></td>
</tr>
<tr>
<td>硝酸ラジカル</td>
<td>データなし</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

出典：SRC:AopWin, 2004 (反応速度定数)

なお、無水フタル酸は、波長が 290 nm 以上の光を吸収するので、直接光分解される可能性がある (U.S. NLM : HSDB, 2004)。

5.2 水中での安定性

5.2.1 非生物的分解性

無水フタル酸の pH 5.2 における加水分解に関する速度定数は、25℃では 7.9×10⁻³ 秒⁻¹ と測定されている (Hawkins, 1975)。このときの加水分解半減期は約 1.5 分に相当し、水中では容易に加水分解されてフタル酸になる。

5.2.2 生分解性

無水フタル酸は、水中では速やかに加水分解されてフタル酸となる (5.2.1 参照)。フタル酸は、好気的条件下のみならず、馴化などの条件がととのった嫌気的条件下において生分解されると推定される。

a 好気的生分解性 （表 5-3、表 5-4）

表 5-3 無水フタル酸の化学物質審査規制法に基づく生分解性試験結果

<table>
<thead>
<tr>
<th>分解率の測定法</th>
<th>分解率 (%)</th>
<th>判定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>生物化学的酸素消費量 (BOD)測定</td>
<td>85</td>
<td>良分解性</td>
</tr>
<tr>
<td>全有機炭素 (TOC)測定</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>吸光測定</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>

被験物質濃度：100 mg/L、活性汚泥濃度：30 mg/L、試験期間：2週間
出典：通商産業省 (1976) 通商産業公報 (1976年5月28日)

http://www.cerij.or.jp
表 5-4 フタル酸についての好気的生分解性試験結果

<table>
<thead>
<tr>
<th>試験方法</th>
<th>被験物質濃度</th>
<th>試験期間</th>
<th>分解率(%)</th>
<th>出典</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌微生物を用いた好気的な生分解性スクリーニング試験</td>
<td>データなし</td>
<td>2日</td>
<td>100</td>
<td>Alexander & Lustinman, 1966</td>
</tr>
</tbody>
</table>

b 嫌気的生分解性（表 5-5）

表 5-5 フタル酸の嫌気的生分解性試験結果

<table>
<thead>
<tr>
<th>試験方法</th>
<th>被験物質濃度</th>
<th>試験期間</th>
<th>分解率(%)</th>
<th>出典</th>
</tr>
</thead>
<tbody>
<tr>
<td>消化汚泥由来の微生物を用いた嫌気的なメタン発酵条件下 (誘導期間：9日間)</td>
<td>不明</td>
<td>4週間</td>
<td>100</td>
<td>Battersby & Wilson, 1989</td>
</tr>
<tr>
<td>嫌気的生分解性試験 (植種源は不明) (誘導期間：14日間)</td>
<td>不明</td>
<td>30日以内</td>
<td>90 (除去速度：1日あたり 50 mg/L)</td>
<td>Chou et al., 1979</td>
</tr>
</tbody>
</table>

注: ベンゼンで飼育した微生物を用いた場合には、誘導期間なしに分解。

5.3 環境水中での動態

無水フタル酸が河川水等の環境水中に排出された場合は、速やかに加水分解されてフタル酸になる（5.2.1参照）。フタル酸のヘンリー定数は \(2.21 \times 10^{-7} \) Pa・m\(^3\)/mol（25℃）と極めて低いので（3章参照）、水中から大気中への揮散性は低いと推定される。フタル酸の土壌吸着係数（Koc）の値は 73（3章参照）であるので、非解離状態のフタル酸は水中の懸濁物質及び底質には吸着され難しいと推定される。しかし、一般環境水中では、フタル酸のカルボキシル基は、その解離定数（pKa1=2.950、pKa2=5.408）（3章参照）から、ほとんどの解離した状態で存在しており、腐植物質のアミノ基やイミノ基などと強く結合し、腐植物質などを多く含む懸濁物質及び底質に吸着される可能性がある。以上のこと及び 5.2 の結果より、環境水中に無水フタル酸が排出された場合は、まず加水分解によりフタル酸になり、次に生分解により除去されると推定される。

5.4 生物濃縮性

無水フタル酸は、ミジンコ、へび（Physa）及び魚（Gambusia）には濃縮されないとの報告がある（Lu and Metcalf, 1975）。無水フタル酸は水中では速やかに加水分解されてフタル酸になる（5.2.1参照）。\(^{14}\)C-フタル酸（0.6～600 ppm）を用いた蓄積実験（土壌から根を経由した種子への蓄積性を観察）では、小麦・トウモロコシ・大豆などへの平均的な生物蓄積係数は、作物全体では 0.003、種子（食用部分）では 0.0005 であった（Dorney et al., 1985）。フタル酸の生物濃縮係数（BCF）はオクタノール/水分分配係数（log Kow）の値 0.73（3章参照）から 3.2 と計算される（SRC: BcfWin, 2005）。

以上のことから、無水フタル酸及びフタル酸の生物への濃縮性は低いと推定される。

http://www.cerij.or.jp
6. 環境中の生物への影響
6.1 水生生物に対する影響

無水フタル酸は水中で容易に加水分解されてフタル酸になる。加水分解半減期は約1.5分と推定されており（5.2.1参照）、調査した範囲内では、フタル酸の水生生物に関する試験報告は得られていないが、実際はフタル酸の毒性を示しているものと考えられる。

6.1.1 藻類に対する毒性（表6-1）

淡水緑藻のセレナストラムを用いた生長阻害試験が報告されており、バイオマス及び生長速度によって算出した72時間EC₅₀はそれぞれ48 mg/L、63 mg/L、72時間NOECはそれぞれ9.5 mg/L、32 mg/Lであった（環境省, 2004a）。また、同じセレナストラムのバイオマスによって算出した96時間EC₅₀は4.14 mg/Lであったとの報告もある（Bollman et al., 1989）。これらの試験ではフタル酸濃度が測定されている。

調査した範囲内では、無水フタル酸の海産種に関する試験報告は得られていない。

表 6-1 無水フタル酸の藻類に対する毒性試験結果

<table>
<thead>
<tr>
<th>生物種</th>
<th>試験法/方式</th>
<th>温度 (℃)</th>
<th>エンドポイント</th>
<th>濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>淡水</td>
<td>OECD 201 GLP止水</td>
<td>23±2</td>
<td>72時間EC₅₀</td>
<td>生長阻害バイオマス</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24-48時間EC₅₀</td>
<td>生長速度</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24-72時間EC₅₀</td>
<td>生長速度</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-72時間EC₅₀</td>
<td>生長速度</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72時間NOEC</td>
<td>生長速度バイオマス</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24-48時間NOEC</td>
<td>生長速度</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24-72時間NOEC</td>
<td>生長速度</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-72時間NOEC</td>
<td>生長速度</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>U.S. EPA止水</td>
<td>24</td>
<td>96時間EC₅₀</td>
<td>生長阻害バイオマス</td>
<td>4.14</td>
</tr>
</tbody>
</table>

(m): 測定濃度(フタル酸濃度)
1) 無水フタル酸が水中で加水分解した後のフタル酸の毒性を示していると考えられる、2) 現学名: Pseudokirchneriella subcapitata、3) 文献に基づいて再計算した値

6.1.2 無脊椎動物に対する毒性（表6-2）

甲殻類のオオミジンコを用いた急性及び長期毒性が検討されている。急性毒性は72時間EC₅₀ (遊泳阻害) が71 mg/Lであった。この試験では、試験最高濃度（110 mg/L）区では試験液調製時のpHが4.8と低く、全個体が遊泳阻害となったことから、新たに同じ濃度でpHを対照区と同等の値に調整し、影響を観察した。その結果、いずれの個体にも影響が認められなかったことから、pHによる影響が大きかったと判断された（環境省, 2004b）。

長期毒性については、繁殖を指標とした21日間NOECが16 mg/Lであった（環境省, 2004c）。

http://www.cerij.or.jp
調査した範囲内では、無水フタル酸の海産種に関する試験報告は得られていない。

表 6-2 無水フタル酸の無脊椎動物に対する毒性試験結果1)

<table>
<thead>
<tr>
<th>生物種</th>
<th>大きさ/成長段階</th>
<th>試験法/方式</th>
<th>温度(℃)</th>
<th>硬度(mg CaCO3/L)</th>
<th>pH</th>
<th>エンドポイント</th>
<th>濃度(mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>淡水</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphnia magna (甲殻類、メジンコ)</td>
<td>生後24時間以内</td>
<td>OECD 202 GLP 半止水</td>
<td>19.5-20.9</td>
<td>74</td>
<td>4.8-7.8</td>
<td>24時間EC50 48時間EC50</td>
<td>游泳阻害</td>
<td>86 71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OECD 211 GLP 半止水</td>
<td>19.1-20.9</td>
<td>73-80</td>
<td>5.5-7.9</td>
<td>21日間LC50 21日間EC50 21日間NOEC 21日間LOEC</td>
<td>繁殖</td>
<td>55 42 16 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(m)</td>
</tr>
</tbody>
</table>

(m): 測定濃度 (フタル酸濃度)
1) 無水フタル酸が水中で加水分解した後のフタル酸の毒性を示していると考えられる

6.6.3 魚類に対する毒性 (表 6-3)

淡水魚類のゼブラフィッシュ、メダカ、ニジマス、ゴールデンオルフェに対する試験報告がある。

急性毒性については、メダカに対する 96 時間 LC50 が 99 mg/L 超であった。この試験では、試験最高濃度 (99 mg/L) 区では試験液調製時の pH が 4.3 ～ 4.7 と低く、1 個体が死亡したことから、新たに同じ濃度で pH を対照区と同等の値に調整し、影響を観察した。その結果、いずれの個体も影響が認められなかったことから、pH による影響が大きかったと判断された (環境省, 2004d)。また、ゴールデンオルフェに対する 48 時間 LC50 が 313 mg/L (Huels, 未発表) であった。

長期毒性については、初期生活段階毒性試験の報告があり、ゼブラフィッシュの受精卵を用いた 7 日間 LC50 は 561 mg/L、致死を指標とした NOEC は 320 mg/L であった。ニジマス受精卵を用いた試験での 60 日間 LC50 は 44.2 mg/L、発生阻害、致死及び成長を指標とした NOEC は 10 mg/L であった (van Leeuwen et al., 1990)。

調査した範囲内では、無水フタル酸の海水魚に関する試験報告は得れていない。

表 6-3 無水フタル酸の魚類に対する毒性試験結果 1)

<table>
<thead>
<tr>
<th>生物種</th>
<th>大きさ/成長段階</th>
<th>試験法/方式</th>
<th>温度(℃)</th>
<th>硬度(mg CaCO3/L)</th>
<th>pH</th>
<th>エンドポイント</th>
<th>濃度(mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>淡水</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danio rerio (ゼブラフィッシュ)</td>
<td>産卵後2-4時間の受精卵</td>
<td>半止水助剤 2)</td>
<td>25</td>
<td>250</td>
<td>8.4</td>
<td>7日間 LC50 7日間 NOEC 致死</td>
<td>561 320</td>
<td>van Leeuwen et al., 1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(n)</td>
</tr>
</tbody>
</table>
生物種

<table>
<thead>
<tr>
<th>生物種</th>
<th>大きさ/成長段階</th>
<th>試験法/方式</th>
<th>温度（℃）</th>
<th>硬度（mg CaCO3/L）</th>
<th>pH</th>
<th>エンドポイント濃度（mg/L）</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oryzias latipes</td>
<td>2.1 cm 0.16 g</td>
<td>OECD 203 GLP 半止水</td>
<td>23.0-24.8</td>
<td>51</td>
<td>4.3-7.9</td>
<td>96時間 LC50 > 99 (m)</td>
<td>環境省, 2004d</td>
</tr>
<tr>
<td>Oncorhynchus mykiss</td>
<td>受精後3時間の卵</td>
<td>半止水 助剤 2)</td>
<td>10±1</td>
<td>50</td>
<td>7.7 ±0.2</td>
<td>60日間 LC50 60日間 LOEC 60日間 NOEC 発生, 致死, 成長</td>
<td>van Leeuwen et al., 1990</td>
</tr>
<tr>
<td>Leuciscus idus</td>
<td>13-20 cm 20-80 g</td>
<td>DIN3) 38412-15止水</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>48時間 LC50 313 (n)</td>
<td>Huels, 未発表</td>
</tr>
</tbody>
</table>

ND: データなし, (m): 測定濃度 (フタル酸濃度), (n): 設定濃度
1) 無水フタル酸が水中で加水分解した後のフタル酸の毒性を示していると考えられる, 2) ジメチルスルホキシド (<100μL/L), 3) ドイツ規格協会 (Deutsches Institut fur Normung) テストガイドライン

6.2 環境中の生物への影響 (まとめ)

無水フタル酸の環境中的生物に対する毒性影響については、致死、生長阻害などを指標に検討されているが、調査した範囲内では、海産生物に関する試験報告は得られていない。また、フタル酸の水生生物に関する試験報告は得られていないが、実際はフタル酸の毒性を示しているものと考えられる。

藻類について、淡水緑藻のセレナストラムを用いた生長阻害試験の報告があり、バイオマス及び生長速度によって算出された72時間 EC50はそれぞれ48 mg/L, 63 mg/L, 72時間 NOECはそれぞれ9.5 mg/L, 32 mg/Lであった。

甲殻類の急性毒性については、オオミジンコに対する48時間 EC50 (遊泳阻害) が71 mg/Lであった。長期毒性については、オオミジンコの繁殖を指標とした21日間 NOECは16 mg/Lであった。

魚類に対する急性毒性については、淡水魚のメダカに対する96時間 LC50が99 mg/L超であった。長期毒性については、ニジマス受精卵を用いた初期生活段階毒性試験での60日間 LC50は44.2 mg/L、発生阻害、致死及び成長を指標としたNOECは10 mg/Lであった。

以上から、無水フタル酸は水中で容易に加水分解するので、水生生物に対する影響はその加水分解物であるフタル酸の影響と考えられる。水生生物に対する急性毒性は、オオミジンコに対する71 mg/Lが最小値である。長期毒性についてのNOECは、藻類では32 mg/L、甲殻類では16 mg/L、魚類では10 mg/Lである。

得られた毒性データのうち水生生物に対する最小値は、魚類であるニジマスの致死及び成長を指標とした60日間 NOECの10 mg/Lである。
7. ヒト健康への影響

7.1 生体内運命

無水フタル酸暴露者における尿中代謝物は遊離のフタル酸がほとんどで、そのまま排泄される（日本産業衛生学会, 1998）。

7.2 疫学調査及び事例（表7-1）

ヒトが無水フタル酸に暴露された事例で、眼、皮膚及び呼吸器系に対し刺激性を示し、これに起因した喘息、慢性気管支炎などがみられる。また、皮膚接触により感作性もみられている。

<table>
<thead>
<tr>
<th>対象集団性別・人数</th>
<th>暴露状況/暴露量</th>
<th>結 果</th>
<th>文 献</th>
</tr>
</thead>
<tbody>
<tr>
<td>女性タントローリー運転手38才</td>
<td>事故により高濃度のガス状無水フタル酸に暴露</td>
<td>直後に上気道の灼熱感、咳き込み3か月後：喘鳴、就寝時の呼吸困難。気道過敏症以外に異常なし1年後：異常なし</td>
<td>Frans & Pahulycz, 1993</td>
</tr>
<tr>
<td>作業者アルキド樹脂及び不飽和ポリエステル樹脂を製造する工場118人</td>
<td>1日数回、10-30間分程度無水フタル酸25kgを化学反応器に投入する作業の際に暴露。無水フタル酸取り扱い時の平均気中濃度は2.8-13mg/m³、それ以外の作業時は0.3mg/m³以下</td>
<td>28人（24%）に鼻炎、上気道の炎症、13人（11%）に慢性気管支炎、21人（18%）に喘息</td>
<td>Wernfors et al., 1986</td>
</tr>
</tbody>
</table>
| アルキド樹脂及び不飽和ポリエステル樹脂を製造する工場無水フタル酸に暴露された作業者23人暴露されていない作業者18人 | 無水フタル酸を吸入暴露 | 暴露による症状：暴露群：対照群
結膜炎：48%：6%
鼻炎：39%：0%
鼻炎：16人
鼻炎：14人
喘息：5人
慢性気管支炎：6人 | Nielsen et al., 1991 |
| 作業者アルキド樹脂製造工場35人22-64才（平均年齢45才） | 1日1-2回、5-30間分程度無水フタル酸25kgを化学反応器に投入する作業の際に暴露。平均13年間無水フタル酸を暴露。取り扱い中の平均気中無水フタル酸濃度は6.6mg/m³（1.5-17.4mg/m³）、これ以外の作業時における無水フタル酸濃度は0.1mg/m³未満 | 結膜炎：16人
鼻炎：14人
喘息：5人
慢性気管支炎：6人 | Nielsen et al., 1988 |
7.3 実験動物に対する毒性

7.3.1 急性毒性 (表 7-2)
経口投与による LD₅₀ は、マウスで 1,500～2,210 mg/kg、ラットで 800～4,020 mg/kg、ウサギで 1,000 mg/kg 超、ネコでは 800 mg/kg である。吸入暴露による LC₅₀ は、ラットで 210 mg/L 超である。経皮投与による LD₅₀ は、ウサギで 10,000 mg/kg 超である。

<table>
<thead>
<tr>
<th>項目</th>
<th>馬ウサギ</th>
<th>ラット</th>
<th>ウサギ</th>
<th>ネコ</th>
</tr>
</thead>
<tbody>
<tr>
<td>経口 LD₅₀ (mg/kg)</td>
<td>1,500-2,210</td>
<td>800-4,020</td>
<td>>1,000</td>
<td>800</td>
</tr>
<tr>
<td>吸入 LC₅₀ (ppm)</td>
<td>ND</td>
<td>>210 mg/L (1 時間)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>経皮 LD₅₀ (mg/kg)</td>
<td>ND</td>
<td>ND</td>
<td>>10,000</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND: データなし

7.3.2 刺激性及び腐食性 (表 7-3)
ウサギの皮膚で刺激性なしとするデータがあるが、OECD テストガイドラインに従った試験で軽度の刺激性がみられており、また、眼刺激性試験でも刺激性がみられていることから、無水フタル酸はウサギの皮膚及び眼に刺激性を有すると考える。

<table>
<thead>
<tr>
<th>動物種等</th>
<th>試験法</th>
<th>投与方法</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>ドラゼー</td>
<td>試験法</td>
<td>皮膚適用</td>
<td>500 mg</td>
<td>刺激性なし</td>
<td>Thyssen, 1979</td>
</tr>
<tr>
<td>ドラゼー</td>
<td>試験法</td>
<td>皮膚適用</td>
<td>0.5 g</td>
<td>刺激性なし</td>
<td>Potokar, 1985</td>
</tr>
<tr>
<td>ドラゼー</td>
<td>試験法</td>
<td>皮膚適用</td>
<td>ND</td>
<td>軽度の刺激性</td>
<td>Chemische Werke Huels, 1983</td>
</tr>
<tr>
<td>ドラゼー</td>
<td>試験法</td>
<td>眼適用</td>
<td>50 mg</td>
<td>中等度の刺激性</td>
<td>Thyssen, 1979</td>
</tr>
<tr>
<td>ドラゼー</td>
<td>試験法</td>
<td>眼適用</td>
<td>50 mg</td>
<td>軽度の刺激性</td>
<td>ATDAEI, 1996</td>
</tr>
<tr>
<td>ドラゼー</td>
<td>試験法</td>
<td>眼適用</td>
<td>ND</td>
<td>強度の刺激性</td>
<td>Biofax Industrial Bio-Test Laboratories, 1970</td>
</tr>
<tr>
<td>ドラゼー</td>
<td>試験法</td>
<td>眼適用</td>
<td>ND</td>
<td>強度の刺激性</td>
<td>International Biotest Laboratories, 1975</td>
</tr>
</tbody>
</table>
7.3.3 感作性 (表 7-4)

無水フタル酸はモルモットでの皮膚感作性試験及び吸入感作性試験で陽性である。

表 7-4 無水フタル酸の感作性試験結果

<table>
<thead>
<tr>
<th>動物種等</th>
<th>試験法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>モルモット</td>
<td>ビューラー (Buehler) 法</td>
<td>3 週間に 9 回皮膚適用して感作し、最終感作後 2 週間目に皮膚適用により惹起</td>
<td>無水フタル酸 20％溶液投与量不明</td>
<td>陽性</td>
<td>Gad, 1988</td>
</tr>
<tr>
<td>モルモット 3 匹以上 (詳細不明)</td>
<td>皮内投与 (Intracutaneus) 法</td>
<td>1 週間に 2 回、背中に無水フタル酸 0.05 cc を含む 0.1％オリーブオイル溶液を 2 週間皮内投与し、最終感作後 2 週間目に惹起</td>
<td>ND</td>
<td>陽性</td>
<td>Jacobs, et al., 1940</td>
</tr>
<tr>
<td>モルモット</td>
<td>Epicutaneous 法</td>
<td>無水フタル酸を 11 日間に 6-10 回皮膚適用して感作、最終感作後 2-3 週間目に惹起</td>
<td>ND</td>
<td>陰性</td>
<td>Zeller, 1955</td>
</tr>
<tr>
<td>モルモット</td>
<td>吸入感作試験</td>
<td>ND</td>
<td>ND</td>
<td>陽性</td>
<td>Chernichenko, et al., 1973</td>
</tr>
<tr>
<td>マウス</td>
<td>MEST 法</td>
<td>ND</td>
<td>無水フタル酸 10％溶液投与量不明</td>
<td>陽性</td>
<td>Gad, 1988</td>
</tr>
</tbody>
</table>

ND: データなし
7.3.4 反復投与毒性（表 7-5）

無水フタル酸の反復投与毒性については、マウス、ラットを用いた経口投与試験、モルモットを用いた吸入暴露試験が行われている。しかし、経口投与での無水フタル酸の NOAEL は確定できなかった。また、吸入暴露についても、刺激性に起因する影響がみられているが、信頼性のあるデータは得られていない。

<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウス B6C3F1 雄雄 10匹/群</td>
<td>経口投与（混餌）</td>
<td>7週間毎日</td>
<td>0、6,200、12,500、25,000、50,000 ppm
(0、約 886、1,786、3,571、7,143 mg/kg/日)
IUCLID 换算</td>
<td>投与に関連する影響なし</td>
<td>NCI, 1979</td>
</tr>
</tbody>
</table>
| マウス B6C3F1 雄雄 媒体対照群：20匹、投与群：50匹/群 | 経口投与（混餌） | 32週間投与後、用量を減らし、その後、33-104週間投与。104週目に剖検。
（無水フタル酸を2週間保管した場合、1日あたり2.59%（372 ppm）が分解、消失） | 0-32週間：0、25,000、50,000 ppm
(0、3,750、7,500 mg/kg/日)
33-104週間：雄：0、12,500、25,000 ppm（0、1,875、3,750 mg/kg/日）、雌：0、6,250、12,500 ppm（0、938、1,875 mg/kg/日）
CERI 换算 | 動（対照群、低用量群、高用量群）：
肺・腎臓のリンパ球増加
（高用量群）：慢性胆管炎
（低用量群、高用量群）：副腎皮質の萎縮、視床の亜鉛沈着
雌（対照群、低用量群、高用量群）：
肺・腎臓のリンパ球増加
雌雄：用量依存的に体重増加抑制 | NCI, 1979 |
| ラット F344 雄雄 10匹/群 | 経口投与（混餌） | 7週間毎日 | 0、6,200、12,500、25,000、50,000 ppm
(0、約 413、833、1,667、3,333 mg/kg/日)
IUCLID 换算 | 25,000 ppm：雄（4/10）で、肝臓の小葉中心性の細胞質空胞化
50,000 ppm：雌雄共に異常なし
用量依存性なし | NCI, 1979 |
| ラット F344 雄雌 媒体対照群：20匹、投与群：50匹/群 | 経口投与（混餌） | 105週間毎日 | 0、7,500、15,000 ppm
(0、375、750 mg/kg/日)
CERI 换算 | 投与に関連する影響なし | NCI, 1979 |

http://www.cerij.or.jp
7.3.5 生殖・発生毒性

無水フタル酸の発生毒性については、雌のマウスに無水フタル酸 55.5 mg/kg/日を妊娠 8〜10日まで腹腔内投与した試験で、胎児（帝王切開日不明）に肋骨及び脊椎の奇形、妊娠 11〜13日投与では口蓋裂がみられたとの報告がある（Brown et al., 1978; Dixon et al., 1978）が、元文献を入手することができず、詳細は不明である。

また、無水フタル酸の生殖毒性試験に関する試験報告は得られていない。

7.3.6 遺伝毒性 (表 7-6)

無水フタル酸の遺伝毒性については、in vitroの試験ではいずれも陰性であったが、in vivo 試験に関する報告が得られていないため、無水フタル酸の遺伝毒性の有無を明確に判断することはできない。

<table>
<thead>
<tr>
<th>試験系</th>
<th>試験材料</th>
<th>処理条件</th>
<th>用量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>in vitro</td>
<td>ネズミチフス菌TA98、100、1535、1537</td>
<td>プレート法</td>
<td>0-10,000 μg/plate</td>
<td>- -</td>
<td>Zeiger, et al, 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- - (ただし、S9はSDラットとシリアンハムスターの肝臓（Aroclor1254誘導))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ネズミチフス菌TA98、100、1535、1537</td>
<td>ND</td>
<td>3 μmol/plateまで</td>
<td>- -</td>
<td>Florin, et al, 1980</td>
</tr>
<tr>
<td>試験系</td>
<td>試験材料</td>
<td>処理条件</td>
<td>用量</td>
<td>結果</td>
<td>文献</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>試験系</td>
<td>試験材料</td>
<td>処理条件</td>
<td>用量</td>
<td>結果</td>
<td>文献</td>
</tr>
<tr>
<td>ネズミミチフス菌TA97、98、100、102、104、1535、1537、1538</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>Shelby & Stasiewicz, 1984</td>
</tr>
<tr>
<td>染色体異常試験</td>
<td>CHO 細胞</td>
<td>ND</td>
<td>30-300 μg/ml</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CHO 細胞</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>Phillips et al., 1986</td>
</tr>
<tr>
<td>CHO 細胞</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>Shelby & Stasiewicz, 1984</td>
</tr>
<tr>
<td>姉妹染色分体交換試験</td>
<td>CHO 細胞</td>
<td>ND</td>
<td>10-300 μg/ml</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CHO 細胞</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>Shelby & Stasiewicz, 1984</td>
</tr>
<tr>
<td>細胞増殖試験</td>
<td>腹水肉腫 BP8細胞(Ascites sarcoma BP8 cells)</td>
<td>ND</td>
<td>1％</td>
<td>-</td>
<td>Pilotti et al., 1975</td>
</tr>
</tbody>
</table>

CHO 細胞: チャイニーズハムスター卵巣線維芽 CHO 細胞
+: 阳性; -: 陰性; ND: データなし
7.3.7 発がん性 （表 7-7, 表 7-8）

無水フタル酸の発がん性については、マウス、ラットを用いた経口投与試験が行われているが、いずれの試験でも無水フタル酸の投与による腫瘍の発生は認められていない。

IARC では無水フタル酸の発がん性を評価していない。ACGIH では A4（ヒトに対して発がん性が分類できない物質）と評価している。

表 7-7 無水フタル酸の発がん性試験結果

<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウス B6C3F1 雌雄 媒体対照群: 20匹、投与群: 50匹/群</td>
<td>経口投与（混餌）</td>
<td>32週間投与後、用量を減らし、72週間投与</td>
<td>0-32週間: 0, 25,000, 50,000 ppm (0, 3,750, 7,500 mg/kg/日) 33-104週間: 雄: 0, 12,500, 25,000 ppm (0, 1,875, 3,750 mg/kg/日), 雌: 0, 6,250, 12,500 ppm (0, 938, 1,875 mg/kg/日) CERI換算</td>
<td>腫瘍発生率の有意な増加はみられず</td>
<td>NCI, 1979</td>
</tr>
<tr>
<td>ラット F344 雌雄 媒体対照群: 20匹、投与群: 50匹/群</td>
<td>経口投与（混餌）</td>
<td>105週間</td>
<td>0, 7,500, 15,000 ppm (0, 375, 750 mg/kg/日) CERI換算</td>
<td>腫瘍発生率の有意な増加はみられず</td>
<td>NCI, 1979</td>
</tr>
</tbody>
</table>

表 7-8 国際機関等での無水フタル酸の発がん性評価

<table>
<thead>
<tr>
<th>機関/出典</th>
<th>分 類</th>
<th>分 類 基 準</th>
</tr>
</thead>
<tbody>
<tr>
<td>IARC (2004)</td>
<td>ー</td>
<td>発がん性について評価されていない。</td>
</tr>
<tr>
<td>日本産業衛生学会 (2004)</td>
<td>ー</td>
<td>発がん性について評価されていない。</td>
</tr>
<tr>
<td>U.S. NTP (2002)</td>
<td>ー</td>
<td>発がん性について評価されていない。</td>
</tr>
</tbody>
</table>

7.4 ヒト健康への影響（まとめ）

無水フタル酸は生体内でフタル酸となり、抱合体とならず、そのまま排泄されるという報告がある。

無水フタル酸はヒトが無水フタル酸に暴露された事例で、眼、皮膚及び呼吸器系に対し刺激性を示し、これに起因した喘息、慢性気管支炎などがみられる。また、皮膚接触により感作性を示している。

http://www.cerij.or.jp
実験動物における急性毒性として、経口投与によるLD₅₀は、マウスで1,500〜2,210 mg/kg、ラットで800〜4,020 mg/kg、ウサギで1,000 mg/kg超、ネコでは800 mg/kgである。吸入暴露によるLC₅₀は、ラットで210 mg/L超である。経皮投与によるLD₅₀は、ウサギで10,000 mg/kg超である。

刺激性・腐食性については、ウサギの皮膚に対して刺激性、眼に対して強度の刺激性がみられている。

感作性については、モルモット及びマウスを用いた試験で、皮膚感作性及び呼吸器感作性がみられている。

無水フタル酸の反復投与毒性試験では、マウスでの104週間経口投与試験で、雌雄で用量依存的に体重増加抑制、雌雄の媒体対照群と投与群で、肺、腎臓への影響がみられているが、対照群にもみられており、用量関係がないこと、摂取量も分解などで明確でないことなどから、NOAELは確定できない。また、吸入暴露でも信頼できるデータがないことから、NOAELは確定できない。

調査した範囲内では、無水フタル酸の生殖・発生毒性試験に関して信頼できる試験報告は得られていない。

遺伝毒性試験について、in vitroの試験ではいずれも陰性であったが、in vivo試験に関する報告が得られていないため、無水フタル酸の遺伝毒性の有無を明確に判断することはできない。

発がん性については、現時点で入手できたデータからは、無水フタル酸の投与による腫瘍の発生は認められていない。IARCでは無水フタル酸の発がん性を評価していない。
文献
（文献検索時期：2004年4月1）

ACGIH, American Conference of Governmental Industrial Hygienists (2004) TLVs and BEIs.
Huels AG (未発表) unpublished data. (IUCLID, 2000 から引用)
International Biotest Laboratories (1975) unpublished data. (IUCLID, 2000 から引用)

1) データベースの検索を2004年4月に実施し、発生源情報等で新たなデータを入手した際には文献を更新した。
Lenz, P. et al. (1989) Toxicity Assessment. 4, 43-52. (IUCLID, 2000 から引用)
Malten, K.E. and Zielhauus, R.L. (1964) Industrial Toxicology and Dermatology in the Production and Processing of Plastics., 59-70.
環境省 (2004b) 無水フタル酸のオオミジンコ (Daphnia magna) に対する急性遊泳阻害試験 (日本食品分析センター, 試験番号: 第 15031 号, 2004 年 3 月 31 日).
環境省 (2004c) 無水フタル酸のオオミジンコ (Daphnia magna) に対する繁殖阻害試験 (日本食品分析センター, 試験番号: 第 15032 号, 2004 年 3 月 31 日).
環境省 (2004b) 特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律第 11 条に基づく開示 (排出年度: 平成 14 年度, 平成 13 年度修正版).
環境省 (2004c) 特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律第 11 条に基づく開示 (排出年度: 平成 15 年度, 平成 14 年度修正版).
製品評価技術基盤機構 (2005) 化学物質のリスク評価及びリスク評価手法の開発プロジェクト/平成 16 年度研究報告書 (新エネルギー・産業技術総合開発機構 委託事業).